算法金 | 深度学习图像增强方法总结

图像增强方法在数字图像处理中占有重要地位,它能够有效提高图像的视觉效果,增强图像的细节信息,从而在医学、遥感、工业检测等多个领域发挥重要作用 1. 空间域增强方法 空间域增强方法是通过直接对图像像素进行操作来实现图像增强的技术。以下是几种常见的空间域增强方法: 1.1 直方图均衡化 直方图均衡化是一

推荐一枚宝藏Up主,顺便聊聊感想

众所周知,B站是学习网站 最近发现一宝藏Up主,主要做科普,主题包括但不限于:大模型的底层算法、量子计算底层原理和硬件设计,以及其他物理或者自然科学主题,总体偏向于理工科。 值得推荐的理由:Up主对底层技术的了解非常透彻,因此举的例子也非常生动(即使如傅里叶变换这类复杂的数学公式,也能用生活中的

【java深入学习第1章】深入探究 MyBatis-Spring 中 SqlSession 的原理与应用

前言 在使用 MyBatis 进行持久层开发时,通常会与 Spring 框架集成,以便更好地管理事务和依赖注入。在 MyBatis-Spring 集成中,SqlSession 是一个非常重要的概念。本文将详细介绍 SqlSessionTemplate 和 SqlSessionDaoSupport,并

PHP 程序员是学 Swoole ?还是学 Go ?

这次为什么要讨论这个话题,因为 Swoole 和 Go 在 PHP 程序员坊间一直都是茶语饭后的谈资,觉得懂 Swoole 和 Go 的就高人一等。

Quartus Ⅱ调用FIFO IP核方法实现求和(Mega Wizard)

本次实验学习记录主题为“FIFO_IP核实现算术求和”,主要内容是上位机通过串口向FPGA发送一定规格的数字矩阵,FPGA对矩阵处理,按规定逻辑实现求和运算,将结果返回串口转发至上位机。

.NET周刊【7月第1期 2024-07-07】

国内文章 学习.NET 8 MiniApis入门 https://www.cnblogs.com/hejiale010426/p/18280441 MiniApis是ASP.NET Core中的轻量级框架,用最少的代码和配置创建HTTP API。其特点包括简洁明了、性能卓越、灵活多变、易于学习使用,

[大数据][机器学习]之Model Card(模型卡片)介绍

每当我们在公有云或者私有云发布训练好的大数据模型,为了方便大家辨识、理解和运用,参照huggingface所制定的标准制作一个Model Card展示页,是种非常好的模型展示和组织形式。 下面就是一个Model Card 的示例,我试着把它翻译成了中文,源网址,并且提供了Markdown的模板,供大

从一个双非本学渣到自学前端上岸,我都做了些什么

这个世界上其实大部分人还没有到那种需要拼天赋的程度,大家都是普通人,只要你想,别人能做的你也能做。这是我一直相信的。

C语言的简单学习

C语言是编译型语言,先编译再运行,通常用gcc进行编译,于是安装了Ubuntu操作系统。至于编辑器,VS Code也能用,先sudo apt install build-essential gdb,再在VS Code安装C/C++ extension,就可以进行开发了。 C语言程序都是 .c文件结尾

跟我一起学习和开发动态表单系统-前端用vue、elementui实现方法(3)

基于 Vue、Element UI 和 Spring Boot + MyBatis 的动态表单系统前端实现解析 在现代企业信息系统中,动态表单是一种非常常见的功能。它可以根据业务需求灵活地调整表单结构,以满足不同的数据收集和展示需求。在本文中,我们将探讨一种基于 Vue、Element UI 和 S

【动画进阶】类 ChatGpt 多行文本打字效果

今天我们来学习一个有意思的多行文本输入打字效果,像是这样: 这个效果其实本身并非特别困难,实现的方式也很多,在本文中,我们更多的会聚焦于整个多行打字效果最后的动态光标的实现。 也就是如何在文本不断变长,在不确定行数的情况下,让文字的最末行右侧处,一直有一个不断闪烁的光标效果: 单行文本打字效果 在此

基于cifar数据集合成含开集、闭集噪声的数据集

前言 噪声标签学习下的一个任务是:训练集上存在开集噪声和闭集噪声;然后在测试集上对闭集样本进行分类。 训练集中被加入的开集样本,会被均匀得打上闭集样本的标签充当开集噪声;而闭集噪声的设置与一般的噪声标签学习一致,分为对称噪声:随机将闭集样本的标签替换为其他类别;和非对称噪声:将闭集样本的标签替换为特

算法金 | 必会的机器学习评估指标

构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。 选择正确的验证指标就像选择一副水晶球:它使我们能够以清晰的视野看到模型的性能。 在本指南中,我们将探讨分类和回归的基本指标和有效评估模型的知识。 学习何时使用每个指标、优点和缺点以及如何在 Python 中实现它们 1 分类指标

前端 Array.sort() 源码学习

源码地址 V8源码Array 710行开始为sort()相关 Array.sort()方法是那种排序呢? 去看源码主要是源于这个问题 // In-place QuickSort algorithm. // For short (length <= 22) arrays, insertion sort

(数据科学学习手札162)Python GIS神器geopandas 1.0版本发布

本文完整代码及附件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 大家好我是费老师,就在昨天,Python生态中著名的GIS分析库geopandas发布了其1.0.0正式版本。 历经10年迭代升级,geopa

k8s集群搭建及对一些组件的简单理解(一)

背景 k8s的学习环境(用kubeadm方式搭建),我也搭过几次了,但都有点问题。 要么在云服务器上弄,这个的问题是就只有一台轻量服务器,只能搭个单节点的;后来买了一台便宜的,所以就有了两台,但是不在一个zone,一个是广州,一个是成都,内网不通,感觉搭起来很麻烦,还没试过。 要么是在本机的虚拟机上

金仓数据库全攻略:简化部署,优化管理的全流程指南

通过本篇文章的学习和实践,我们深入了解了如何利用Docker技术快速部署KingbaseES数据库。从下载镜像到编写Docker Compose模板,再到容器的启动和管理,每一步都体现了现代化部署方式的便捷和高效。此外,我们还掌握了KSQL命令行工具的使用,这将极大地提升开发人员与数据库交互的效率。

Web之http学习笔记

目录HTTPurlhttp请求请求行请求方法请求头请求正文http响应响应行状态码响应头响应正文Cookie定义:内容:用途:生命周期:隐私和安全性:Session实现原理组成:PHP中的Session设置函数session传输 HTTP http文本传输协议(HyperText Transfer

将强化学习重新引入 RLHF

我们很高兴在 TRL 中介绍 RLOO (REINFORCE Leave One-Out) 训练器。作为一种替代 PPO 的方法,RLOO 是一种新的在线 RLHF 训练算法,旨在使其更易于访问和实施。特别是, RLOO 需要的 GPU 内存更少,并且达到收敛所需的挂钟时间也更短。如下面的图表所示:

详解联邦学习中的异构模型集成与协同训练技术

本文将详细介绍联邦学习中的异构模型集成与协同训练技术,包括基本概念、技术挑战、常见解决方案以及实际应用,结合实例和代码进行讲解。