[转帖]Docker:Python环境Docker镜像瘦身

https://www.jianshu.com/p/c0ad13e0be85 关键字:Docker,Python 原始镜像 封装一个Python 3.7的环境并且安装Python依赖包实现一个机器学习算法预测任务,Dockerfile如下 FROM python:3.7 MAINTAINER xxx

[转帖]利用Python调用outlook自动发送邮件

↓↓↓欢迎关注我的公众号,在这里有数据相关技术经验的优质原创文章↓↓↓ 使用Python发送邮件有两种方式,一种是使用smtp调用邮箱的smtp服务器,另一种是直接调用程序直接发送邮件。而在outlook中我们一般是没有权限去开启smtp服务的,所以一般只能通过第二种直接调用方式发送邮件 基础版本–

制作 Python Docker 镜像的最佳实践

概述 📚️Reference: 制作容器镜像的最佳实践 这篇文章是关于制作 Python Docker 容器镜像的最佳实践。(2022 年 12 月更新) 最佳实践的目的一方面是为了减小镜像体积,提升 DevOps 效率,另一方面是为了提高安全性。希望对各位有所帮助。 通用 Docker 容器镜像

一次Python本地cache不当使用导致的内存泄露

## 背景 近期一个大版本上线后,Python编写的api主服务使用内存有较明显上升,服务重启后数小时就会触发机器的90%内存占用告警,分析后发现了本地cache不当使用导致的一个内存泄露问题,这里记录一下分析过程。 ## 问题分析 ### LocalCache实现分析 该cache大概实现代码如下

使用Python的一维卷积

学习&转载文章:使用Python的一维卷积 背景 在开发机器学习算法时,最重要的事情之一(如果不是最重要的话)是提取最相关的特征,这是在项目的特征工程部分中完成的。 在CNNs中,此过程由网络自动完成。特别是在早期层中,网络试图提取图像的最重要的特征,例如边缘和形状。 另一方面,在最后一层中,它将能

快速上手python的简单web框架flask

简介 python可以做很多事情,虽然它的强项在于进行向量运算和机器学习、深度学习等方面。但是在某些时候,我们仍然需要使用python对外提供web服务。 比如我们现在有一个用python写好的模型算法,这个模型算法需要接收前端的输入,然后进行模拟运算,最终得到最后的输出。这个流程是一个典型的web

《流畅的Python》 读书笔记 第一章数据模型(1)230926

写在最前面的话 缘由 关于Python的资料市面上非常多,好的其实并不太多。 个人认为,基础的,下面的都还算可以 B站小甲鱼 黑马的视频 刘江的博客 廖雪峰的Python课程 进阶的更少,《流畅的Python》应该算一个。 加上,自己也很久没有耐心的看完一本书了 鉴于以上2点,2023-9-26开始

《流畅的Python》 读书笔记 第一章数据模型(2) 230926

1.2 如何使用特殊方法 特殊方法的存在是为了被 Python 解释器调用的,你自己并不需要调用它们 就是说通常你都应该用len(obj)而不是obj.__len()__,无论是系统预置的,还是你自己定义的类,交给Python,解释器会去调用你实现的__len()__ 然而如果是 Python 内置

《流畅的Python》 读书笔记 第二章数据结构(1) 231007

第2章 数据结构 ABC语言是Python的爸爸~ 很多点子在现在看来都很有 Python 风格:序列的泛型操作、内置的元组和映射类型、用缩进来架构的源码、无需变量声明的强类型 不管是哪种数据结构,字符串、列表、字节序列、数组、XML 元素,抑或是数据库查询结果,它们都共用一套丰富的操作:迭代、切片

《流畅的Python》 读书笔记 第二章数据结构(2) 231011

2.5 对序列使用+和* 通常 + 号两侧的序列由相同类型的数据所构成,在拼接的过程中,两个被操作的序列都不会被修改,Python 会新建一个包含同样类型数据的序列来作为拼接的结果 +和*都遵循这个规律,不修改原有的操作对象,而是构建一个全新的序列 l1 = [1,2,3] l2 = [4,5,6]

盘点Python 中字符串的常用操作

摘要:盘点 Python 中字符串的几个常用操作,对新手极度的友好。 本文分享自华为云社区《盘点 Python 中字符串的常用操作,对新手极度友好》,作者:TT-千叶 。 在 Python 中字符串的表达方式有四种 一对单引号一对双引号一对三个单引号一对三个双引号a = ‘abc’b= “abc”c

跟我学Python丨图像增强及运算:局部直方图均衡化和自动色彩均衡化处理

摘要:本文主要讲解图像局部直方图均衡化和自动色彩均衡化处理。这些算法可以广泛应用于图像增强、图像去噪、图像去雾等领域。 本文分享自华为云社区《[Python从零到壹] 五十四.图像增强及运算篇之局部直方图均衡化和自动色彩均衡化处理》,作者: eastmount。 一.局部直方图均衡化 前文通过调用O

深挖 Python 元组 pt.2

哈喽大家好,我是咸鱼 在《深挖 Python 元组 pt.1》中我们了解 Python 元组的一些概念(索引和切片等),以及如何创建元组,最重要的是我们还介绍了元组的不可变特性 那么今天我们来继续深挖 Python 元组 打包&解包 在 python 中,元组可以被打包(packing )和解包(u

深挖 Python 元组 pt.1

哈喽大家好,我是咸鱼 好久不见甚是想念,2023 年最后一次法定节假日已经结束了,不知道各位小伙伴是不是跟咸鱼一样今天就开始“搬砖”了呢? 我们知道元组(tuple)是 Python 的内置数据类型,tuple 是一个不可变的值序列 tuple 的元素可以是任何类型,一般用在存储异构数据(例如数据库

(转载)Python中关键词yield怎么用?

原文: https://stackoverflow.com/questions/231767/what-does-the-yield-keyword-do 译文: https://zhuanlan.zhihu.com/p/23276711?refer=passer 英文ok的同学可以原文译文都读一下

浅谈Python中的包

浅谈Python中的包 Package的定义(你以为的) 你在很多的地方都能看到关于package的定义:在Python中在当前目录下有__init__.py文件的目录即为一个package。 嗯,包括python目前的官网文档也是类似这么介绍的 https://docs.python.org/zh

漫谈Python魔术方法,见过的没见过的都在这里了

漫谈Python魔术方法,见过的没见过的都在这里了 就说一下,不深入 假的一览 提到魔术方法,学过python都应该知道一些。至少你得会__init__吧。 在我之前写的博文中有很多都涉及魔术方法。比如 浅谈Python中的if,可能有你不知道的,涉及__bool__和__len__ 浅谈Pytho

跟我学Python图像处理丨图像特效处理:毛玻璃、浮雕和油漆特效

摘要:本文讲解常见的图像特效处理,从而让读者实现各种各样的图像特殊效果,并通过Python和OpenCV实现。 本文分享自华为云社区《[Python图像处理] 二十四.图像特效处理之毛玻璃、浮雕和油漆特效》,作者:eastmount。 一.图像毛玻璃特效 图像毛玻璃特效如图所示,左边为原始图像,右边

跟我学Python图像处理丨图像分类原理与案例

摘要:本篇文章将分享图像分类原理,并介绍基于KNN、朴素贝叶斯算法的图像分类案例。 本文分享自华为云社区《[Python图像处理] 二十六.图像分类原理及基于KNN、朴素贝叶斯算法的图像分类案例丨【百变AI秀】》,作者:eastmount 。 一.图像分类 图像分类(Image Classifica

跟我学Python图像处理丨带你入门OpenGL

摘要:介绍Python和OpenGL的入门知识,包括安装、语法、基本图形绘制等。 本文分享自华为云社区《[Python图像处理] 二十七.OpenGL入门及绘制基本图形(一)》,作者:eastmount。 一.OpenGL入门知识 1.什么是OpenGL OpenGL(Open Graphics L