MapReduce服务为用户提供海量数据的管理及分析功能,快速从结构化和非结构化的海量数据中挖掘您所需要的价值数据。集群中的FusionInsight Manager将提供企业级的集群的统一管理平台。
Java SpringBoot 通过javax.validation.constraints下的注解,实现入参数据自动验证 如果碰到 `@NotEmpty` 否则不生效,注意看下 `@RequestBody` 前面是否加上了`@Valid`
基础 [自然语言处理(NLP)](https://www.cnblogs.com/vipsoft/p/17450994.html) [自然语言处理PaddleNLP-词向量应用展示](https://www.cnblogs.com/vipsoft/p/17451860.html) [自然语言处理(N
[TOC] Pandas 一个强大的分析结构化数据的工具集,基础是 Numpy(提供高性能的矩阵运算) Pandas 可以从各种文件格式比如 CSV、JSON、SQL、Microsoft Excel 导入数据。 Pandas 可以对各种数据进行运算操作,比如归并、再成形、选择,还有数据清洗和数据加工
目录前提条件创建节点 Demo准备数据创建药品标签节点 在线问诊 Python、FastAPI、Neo4j — 创建节点 Neo4j 节点的标签可以理解为 Java 中的实体。 根据常规流程:首先有什么症状,做哪些对应的检查,根据检查诊断什么疾病,需要用什么药物治疗,服药期间要注意哪些饮食,需要做哪
作者:陈昌浩 1 背景 随着数据量的增长,发现系统在与其他系统交互时,批量接口会出现超时现象,发现原批量接口在实现时,没有做分片处理,当数据过大时或超过其他系统阈值时,就会出现错误。由于与其他系统交互比较多,一个一个接口做分片优化,改动量较大,所以考虑通过AOP解决此问题。 2 Spring-AOP
作者:京东物流 张广治 1 背景 传统的将数据集中存储至单一数据节点的解决方案,在性能和可用性方面已经难于满足海量数据的场景,系统最大的瓶颈在于单个节点读写性能,许多的资源受到单机的限制,例如连接数、网络IO、磁盘IO等,从而导致它的并发能力不高,对于高并发的要求不满足。 每到月初国际财务系统压力巨
本文将介绍TCP连接的断开过程,重点关注四次挥手的过程和状态变迁,以及为什么挥手需要四次和为什么需要TIME_WAIT状态。在TCP连接断开的过程中,双方需要发送FIN和ACK报文来确保数据的可靠传输和连接的正确关闭。挥手需要四次的原因是为了确保数据的完整传输和连接的可靠关闭。
魔笛活动平台要记录每个活动的用户行为数据,帮助客服、运营、产品、研发等快速处理客诉、解决线上问题并进行相关数据分析和报警。可以预见到需要存储和分析海量数据,预估至少几十亿甚至上百亿的数据量,所以需要选择一款能存储海量数据的数据库。由于是通过接收MQ存储或者API方式存储,所以对实时写入性能也有一定要求
首先说一下这个3节点MongoDB集群各个维度的数据规模: 1、dataSize: 1.9T 2、storageSize: 600G 3、全量备份-加压缩开关:186G,耗时 8h 4、全量备份-不加压缩开关:1.8T,耗时 4h27m 具体导出的语法比较简单,此处不再赘述,本文重点描述导入的优化过
直方图,又称质量分布图,用于表示数据的分布情况,是一种常见的统计图表。 一般用横轴表示数据区间,纵轴表示分布情况,柱子越高,则落在该区间的数量越大。构建直方图时,首先首先就是对数据划分区间,通俗的说即是划定有几根柱子(比如,1980年~2020年的数据,每5年划分一个区间的话,共8个区间)。接着,对
文章贡献者 Authors 技术指导: 泰康人寿 数据架构资深专家工程师 王可 文章作者: 泰康人寿 数据研发工程师 田昕峣 摘要 Abstract 本文详细介绍了泰康人寿基于 Apache Hudi 构建湖仓一体分布式数据处理平台的技术选型方法、整体架构设计与实施、以及针对大健康领域的领域特征和公
总结下指令微调、对齐样本筛选相关的方案包括LIMA,LTD等。论文都是以优化指令样本为核心,提出对齐阶段的数据质量优于数量,少量+多样+高质量的对齐数据,就能让你快速拥有效果杠杠的模型
博客地址:https://www.cnblogs.com/zylyehuo/ 开发环境 anaconda 集成环境:集成好了数据分析和机器学习中所需要的全部环境 安装目录不可以有中文和特殊符号 jupyter anaconda提供的一个基于浏览器的可视化开发工具 import numpy as np
本文介绍了vivo在大数据元数据服务横向扩展道路上的探索历程,由实际面临的问题出发,对当前主流的横向扩展方案进行了调研及对比测试,通过多方面对比数据择优选择TiDB方案。其次分享了整个扩展方案流程、实施遇到的问题及解决方案,对于在大数据元数据性能上面临同样困境的开发者本篇文章具有非常高的参考借鉴价值...
折线图是一种用于可视化数据变化趋势的图表,它可以用于表示任何数值随着时间或类别的变化。 折线图由折线段和折线交点组成,折线段表示数值随时间或类别的变化趋势,折线交点表示数据的转折点。 折线图的方向表示数据的变化方向,即正变化还是负变化,折线的斜率表示数据的变化程度。 1. 主要元素 折线图主要由以下
Merkle 树(Merkle Tree)是一种树状数据结构,通常用于验证大规模数据集的完整性和一致性。它的名字来源于其发明者 Ralph Merkle。Merkle 树在密码学、分布式系统和区块链等领域得到广泛应用,尤其在区块链中,它用于验证交易和区块的完整性,确保数据不被篡改。 下面是 Merk
YAML(YAML Ain't Markup Language)是一种人类可读的数据序列化格式,常用于配置文件和数据交换。在 Go 语言中,你可以使用 gopkg.in/yaml.v3 包来解析和生成 YAML 数据。本文将介绍如何使用 gopkg.in/yaml.v3 来处理 YAML 数据。 安
一段包含 bytes 类型的 protobuf 二进制数据,经过 pbjs 解码生成的 json 文件,再传递给 pbjs 编码后生成的二进制数据和原始数据差异巨大,经过一番探究,发现居然是 pbjs 的一个 bug,快来看看你是否踩过这个坑吧~
在智能工厂的建设过程中,为了让每条生产线的生产进度和状态更加清晰,经常需要将生产信息情况显示在电视看板上,称为智能工厂-车间数据可视化大屏方案。 根据工厂和车间的大小,可能会使用 10到100 台甚至更多的电视看板来显示数据可视化大屏仪表板内容。 智能车间看板(数字工厂智慧车间可视化大屏)方案示意图