本次分享的主题是火山引擎数智平台VeDI旗下的A/B测试平台 DataTester 实验管理架构升级与DDD实践。这里说明的一点是,代码的第一目标肯定是满足产品需求,能够满足产品需求的代码都是好代码。而本文中对代码的好坏的评价完全是从架构的视角,结合代码的可读性、可维护性与可扩展性去分析的。 在一个
在缺少标注数据场景,SetFit 是解决的建模问题的一个有前途的解决方案,其由 Hugging Face 与 Intel 实验室 以及 UKP Lab 合作共同开发。作为一个高效的框架,SetFit 可用于对 Sentence Transformers 模型进行少样本微调。 SetFit 仅需很少的
时间序列数据是数据分析中经常遇到的类型,为了更多的挖掘出数据内部的信息,我们常常依据原始数据中的时间周期,将其转换成不同跨度的周期,然后再看数据是否会在新的周期上产生新的特性。 下面以模拟的K线数据为例,演示如何使用pandas来进行周期转换。 1. 创建测试数据 首先创建测试数据,下面创建一天的K
更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群 在移动互联网飞速发展的时代,用户规模和网络信息量呈现出爆炸式增长,信息过载加大了用户选择的难度,这样的背景下,推荐系统应运而生,为用户提供个性化的内容推荐。推荐系统在不断迭代中,其算法、策略、特征、功能和用户界面时
默认情况下 Sentinel 只能接收到 Nacos 推送的消息,但不能将自己控制台修改的信息同步给 Nacos,如下图所示: 但是在生成环境下,我们为了更方便的操作,是需要将 Sentinel 控制台修改的规则也同步到 Nacos 的,所以在这种情况下我们就需要修改 Sentinel 的源码,让其
更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群 在当今高速发展的互联网时代,信息传播迅速,用户数量激增。在面对如此庞大的用户群体和高频的访问需求时,系统高并发访问的性能问题成为了无法回避的挑战。为了满足业务场景中对数据并发查询的即时性和准确性要求,越来越多的企业
场景 周五进行需求评审的时候; 出现了一个图表,本身一个图表本没有什么稀奇的; 可是产品经理在图表的上的备注,让我觉得这个事情并不简单; 那个图表的时间跨度可以是月,年,而且时间间隔很短; 这让我意识到事情并不是想的那样简单; 然后经过简单的询问:如果选择的范围是年;数据可能会上万; 我们都知道;出
移动智能应用可以分为在线模式、纯离线模式与“在线+离线”混合模式。在线模式下系统数据一般存储在服务器端的大中型数据库(如 SQL Server、Oracle、MySQL 等),移动应用依赖于稳定可靠的网络连接;纯离线模式下系统数据一般存储在移动终端的轻量级数据库(如 SQLite等),移动应用不需要
无论对于什么业务来说,用户数据信息的安全性无疑都是非常重要的。尤其是在数字经济大火背景下,数据的安全性就显得更加重要。数据脱敏可以分为两个部分,一个是DB层面,防止DB数据泄露,暴露用户信息;一个是接口层面,有些UI展示需要数据脱敏,防止用户信息被人刷走了。 v需求背景 DB层面的脱敏今天先不讲,今
**爬虫,这个经常被人提到的词,是对数据收集过程的一种形象化描述。特别是在Python语言中,由于其丰富的库资源和良好的易用性,使得其成为编写爬虫的绝佳选择。本文将从基础知识开始,深入浅出地讲解Python爬虫的相关知识,并分享一些独特的用法和实用技巧。本文将以实际的网站为例,深入阐述各个处理部分,
![file](https://img2023.cnblogs.com/other/488581/202307/488581-20230725174651506-356208797.jpg) > > 这篇文章全面探讨了Python作为数据科学领域首选语言的原因。从Python的历史、特性,到在数据科
> 博客地址:https://www.cnblogs.com/zylyehuo/ ```bash # 1.数据库备份与恢复 # mysqldump命令用于备份数据库数据 [root@localhost ~]# mysqldump -u root -p --all-databases > /tmp/d
博客地址:https://www.cnblogs.com/zylyehuo/ NumPy(Numerical Python) 是 Python 语言中做科学计算的基础库。重在于数值计算,也是大部分Python科学计算库的基础,多用于在大型、多维数组上执行的数值运算。 开发环境 anaconda 集成
博客地址:https://www.cnblogs.com/zylyehuo/ 开发环境 anaconda 集成环境:集成好了数据分析和机器学习中所需要的全部环境 安装目录不可以有中文和特殊符号 jupyter anaconda提供的一个基于浏览器的可视化开发工具 为什么学习pandas numpy已
博客地址:https://www.cnblogs.com/zylyehuo/ 开发环境 anaconda 集成环境:集成好了数据分析和机器学习中所需要的全部环境 安装目录不可以有中文和特殊符号 jupyter anaconda提供的一个基于浏览器的可视化开发工具 丢失数据的类型 原始数据中会存在两种
博客地址:https://www.cnblogs.com/zylyehuo/ 开发环境 anaconda 集成环境:集成好了数据分析和机器学习中所需要的全部环境 安装目录不可以有中文和特殊符号 jupyter anaconda提供的一个基于浏览器的可视化开发工具 df = DataFrame(dat
博客地址:https://www.cnblogs.com/zylyehuo/ 开发环境 anaconda 集成环境:集成好了数据分析和机器学习中所需要的全部环境 安装目录不可以有中文和特殊符号 jupyter anaconda提供的一个基于浏览器的可视化开发工具 自定义一个1000行3列(A,B,C
SQL优化中,有一条放之四海而皆准的既定方针,那就是:永远以小数据驱动大数据。其本质其实就是以小的数据样本作为驱动查询能够优化查询效率,在SQL中,涉及到不同表数据的连接、转移、或者合并,这些操作必须得有个数据集作为“带头”大哥,即驱动数据,而这个驱动数据最好是数据量最小的那一个。 内大外小 在讨论
本文介绍基于Python语言,将一个Excel表格文件中的数据导入到Python中,并将其通过字典格式来存储的方法~
本文介绍在ArcGIS下属的ArcMap软件中,ArcGIS Editor for OpenStreetMap这一工具集插件的下载与安装的具体方法~