MATLAB神经网络工具箱使用介绍

本文介绍MATLAB软件中神经网络拟合(Neural Net Fitting)工具箱的具体使用方法。 在MATLAB人工神经网络ANN代码这篇文章中,我们介绍了MATLAB软件中神经网络(ANN)的纯代码实现;而在MATLAB软件中,其实基于神经网络拟合工具箱,就可以点点鼠标实现神经网络的回归。本文

R语言求取大量遥感影像的平均值、标准差:raster库

本文介绍基于R语言中的raster包,批量读取多张栅格图像,对多个栅格图像计算平均值、标准差,并将所得新的栅格结果图像保存的方法~

在Ubuntu系统安装Anaconda及Python

本文介绍在Linux Ubuntu操作系统的电脑中,安装Anaconda环境与Python语言的方法。 在之前的文章Anaconda与Python环境在Windows中的部署中,我们介绍了在Win10电脑中,安装Anaconda环境与Python语言的方法;而在本文中,我们就详细介绍一下在Linux

SingletonKit单例源码阅读学习

阅读学习QFramwork中的SingletonKit源码。 Singleton 普通类的单例 作为最常用的单例模块,通过继承单例泛型类来实现,需要私有构造; //使用第一种接口单例方式 internal class Class2Singleton : Singleton

Python遥感影像叠加分析:基于一景数据提取另一数据

本文介绍基于Python中GDAL模块,实现基于一景栅格影像,对另一景栅格影像的像元数值加以叠加提取的方法。 本文期望实现的需求为:现有一景表示6种不同植被类型的.tif格式栅格数据,以及另一景与前述栅格数据同区域的、表示植被参数的.tif格式栅格数据;我们希望基于前者中的植被类型数据,分别提取6种

mklink命令使得OneDrive同步任意一个文件夹

本文介绍利用mklink命令,使得OneDrive自动同步电脑中任意指定文件夹的方法。 OneDrive是由微软提供的云存储和文件同步服务。它提供了大量的云存储空间,允许用户将文件和数据存储在云端,并在多个设备之间同步和访问这些文件。对于OneDrive而言,默认的同步文件夹共有四个,分别包括: 1

可视化学习:如何使用后期处理通道增强图像效果

GPU是并行渲染的,这样的渲染很高效。但是在实际需求中,有时我们计算片元色值时,需要依赖周围像素点或者某个其他位置像素点的颜色信息,这样的话想要一次性完成绘制就无法做到,需要对纹理进行二次加工处理。

机器学习策略篇:详解清除标注错误的数据(Cleaning up Incorrectly labeled data)

清除标注错误的数据 监督学习问题的数据由输入\(x\)和输出标签 \(y\) 构成,如果观察一下的数据,并发现有些输出标签 \(y\) 是错的。的数据有些标签是错的,是否值得花时间去修正这些标签呢? 看看在猫分类问题中,图片是猫,\(y=1\);不是猫,\(y=0\)。所以假设看了一些数据样本,发现

VisionPro学习笔记(7)——FitLineTool

如果需要了解其他图像处理的文章,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice VisionPro有很多的示例和算子,这里再展示一个比较好用的算子FitLine Tool。我自己

机器学习笔记(3): 神经网络初步

神经网络应该由若干神经元组成。 前面的每一个神经元都会给到一个参数,将传递的所有参数看作一个向量 \(\vec x\),那么此神经元的净输入为: \[z = x \omega + b \]其中 \(\omega\) 称为权重向量。 这里认为 \(x\) 是行向量,而 \(\omega\) 是列向量。

国产大模型参加高考,同写2024年高考作文,及格分(通义千问、Kimi、智谱清言、Gemini Advanced、Claude-3-Sonnet、GPT-4o)

大家好,我是章北海 今天高考,上午的语文结束,市面上又要来一场大模型参考的文章了。 我也凑凑热闹,让通义千问、Kimi、智谱清言一起来写一下高考作文。 公平起见,不加任何其他prompt,直接把题目甩过去。 感觉写的都很一般,通篇口水文,都能拿个及格分吧。 有点好奇,就加了几个国外选手参赛:Gemi

机器学习算法(一):1. numpy从零实现线性回归

系列文章目录 机器学习算法(一):1. numpy从零实现线性回归 机器学习算法(一):2. 线性回归之多项式回归(特征选取) @目录系列文章目录前言一、理论介绍二、代码实现1、导入库2、准备数据集3、定义预测函数(predict)4 代价(损失)函数5 计算参数梯度6 批量梯度下降7 训练8 可视

机器学习策略篇:详解如何改善你的模型的表现(Improving your model performance)

如何改善模型的表现 学过正交化,如何设立开发集和测试集,用人类水平错误率来估计贝叶斯错误率以及如何估计可避免偏差和方差。现在把它们全部组合起来写成一套指导方针,如何提高学习算法性能的指导方针。 所以想要让一个监督学习算法达到实用,基本上希望或者假设可以完成两件事情。首先,的算法对训练集的拟合很好,这

Python结合文件名称将多个文件复制到不同路径下

本文介绍基于Python语言,针对一个文件夹下的大量栅格遥感影像文件,基于其各自的文件名,分别创建指定名称的新文件夹,并将对应的栅格遥感影像文件复制到不同的新文件夹下的方法~

导出谷歌地图提供的各类地图可视化样式的方法

本文介绍在谷歌地图API(Google Maps APIs)中,设计地图样式并将设计好的样式通过JSON或URL导出的方法。 首先,进入Google Maps APIs网站。在弹出的窗口中我们可以看到,目前还可以基于谷歌云端硬盘进行地图样式设计;但原有的Google Maps APIs其实相对来说也

可视化学习 | 如何使用噪声生成纹理

什么是噪声呢?在自然界中,离散的随机是比较常见的,比如蝉鸣突然响起又突然停下,比如雨滴随机落在一个位置,但是随机和连续并存是更常见的情况,比如山脉的走向是随机的,但山峰之间的高度又是连续的,比如天上的云朵、水面的波纹等等。这种把随机和连续结合起来,就形成了噪声。通过利用噪声,我们就可以去模拟真实自然...

设计模式学习(二)工厂模式——工厂方法模式+注册表

目录工厂方法模式的瑕疵注册表 工厂方法模式的瑕疵 在前一篇笔记中我们介绍了工厂方法模式,示例的类图如下: 考虑一种情况:现在要在程序运行时,根据外部资源,动态的实例化对象。也就是说在编译期我们无法知道要实例化的对象的类型。因此在实例化的过程中,就需要加以判断。 例如,在我的例子中,要根据连接到主机的

SMOGN算法Python实现:解决回归分析中的数据不平衡

本文介绍基于Python语言中的smogn包,读取.csv格式的Excel表格文件,实现SMOGN算法,对机器学习、深度学习回归中,训练数据集不平衡的情况加以解决的具体方法~

深度学习论文翻译解析(二十二):Uniformed Students Student-Teacher Anomaly Detection With Discriminative Latent Embbeddings

论文标题:Uniformed Students Student-Teacher Anomaly Detection With Discriminative Latent Embbeddings 论文作者: Paul Bergmann Michael Fauser David Sattlegger C

Anaconda安装Python的seaborn库

本文介绍在Anaconda的环境中,安装Python语言中,常用的一个绘图库seaborn模块的方法。 seaborn模块是基于Matplotlib的数据可视化库,它提供了一种更简单、更漂亮的界面来创建各种统计图形。seaborn模块主要用于数据探索、数据分析和数据可视化,使得我们在Python中创