架构与思维:熔断限流的一些使用场景

1 前言 在《微服务系列》中,我们讲过很多限流,熔断相关的知识。 老生长谈的一个话题,服务的能力终归是有限的,无论是内存、CPU、线程数都是,如果遇到突如其来的峰量请求,我们怎么友好的使用限流来进行落地,避免整个服务集群的雪崩。 峰量请求主要有两种场景: 1.1 突发高峰照成的服务雪崩 如果你的服务

LRU缓存替换策略及C#实现

LRU缓存替换策略 缓存是一种非常常见的设计,通过将数据缓存到访问速度更快的存储设备中,来提高数据的访问速度,如内存、CPU缓存、硬盘缓存等。 但与缓存的高速相对的是,缓存的成本较高,因此容量往往是有限的,当缓存满了之后,就需要一种策略来决定将哪些数据移除出缓存,以腾出空间来存储新的数据。 这样的策

架构设计(三):引入缓存

架构设计(三):引入缓存 作者:Grey 原文地址: 博客园:架构设计(三):引入缓存 CSDN:架构设计(三):引入缓存 缓存是一个临时存储区域,如果请求的数据获取代价比较高或者数据的访问频率比较高,则会把响应结果存储在内存中,以便更快速地提供后续请求。 每次加载一个新的网页,都要执行一次或多次数

架构设计(六):引入消息队列

架构设计(六):引入消息队列 作者:Grey 原文地址: 博客园:架构设计(六):引入消息队列 CSDN:架构设计(六):引入消息队列 消息队列是一个支持持久化的组件,数据存储在内存中,支持异步通信。它作为一个缓冲器,分配异步请求。消息队列的基本架构很简单,包含两个部分 第一部分:输入服务,称为生产

程序的机器级表示(CSAPP Chapter 3,COD Chapter 2)

程序的机器级表示(CSAPP Chapter 3,COD Chapter 2) 0. 序言 我们首先回顾计算机执行机器代码的过程和目的。其目的在于处理数据、管理内存、读写数据、通信......。其过程大概可以这样描述:编译器以汇编代码的形式输出,它是机器代码的文本表示,给出程序中的每一条指令。然后

驱动开发:内核测试模式过DSE签名

微软在`x64`系统中推出了`DSE`保护机制,DSE全称`(Driver Signature Enforcement)`,该保护机制的核心就是任何驱动程序或者是第三方驱动如果想要在正常模式下被加载则必须要经过微软的认证,当驱动程序被加载到内存时会验证签名的正确性,如果签名不正常则系统会拒绝运行驱动,这种机制也被称为驱动强制签名,该机制的作用是保护系统免受恶意软件的破坏,是提高系统安全性的一种手段

驱动开发:内核PE结构VA与FOA转换

本章将继续探索内核中解析PE文件的相关内容,PE文件中FOA与VA,RVA之间的转换也是很重要的,所谓的FOA是文件中的地址,VA则是内存装入后的虚拟地址,RVA是内存基址与当前地址的相对偏移,本章还是需要用到`《驱动开发:内核解析PE结构导出表》`中所封装的`KernelMapFile()`映射函数,在映射后对其PE格式进行相应的解析,并实现转换函数。

驱动开发:内核ShellCode线程注入

还记得`《驱动开发:内核LoadLibrary实现DLL注入》`中所使用的注入技术吗,我们通过`RtlCreateUserThread`函数调用实现了注入DLL到应用层并执行,本章将继续探索一个简单的问题,如何注入`ShellCode`代码实现反弹Shell,这里需要注意一般情况下`RtlCreateUserThread`需要传入两个最重要的参数,一个是`StartAddress`开始执行的内存块

5.9 汇编语言:浮点数操作指令

浮点运算单元是从80486处理器开始才被集成到CPU中的,该运算单元被称为FPU浮点运算模块,FPU不使用CPU中的通用寄存器,其有自己的一套寄存器,被称为浮点数寄存器栈,FPU将浮点数从内存中加载到寄存器栈中,完成计算后在回写到内存中。FPU有8个可独立寻址的80位寄存器,分别名为`R0-R7`他们以堆栈的形式组织在一起,栈顶由FPU状态字中的一个名为TOP的域组成,对寄存器的引用都是相对于栈顶

1.14 手工插入ShellCode反弹

PE格式是 Windows下最常用的可执行文件格式,理解PE文件格式不仅可以了解操作系统的加载流程,还可以更好的理解操作系统对进程和内存相关的管理知识,而有些技术必须建立在了解PE文件格式的基础上,如文件加密与解密,病毒分析,外挂技术等,本次的目标是手工修改或增加节区,并给特定可执行程序插入一段`ShellCode`代码,实现程序运行自动反弹一个Shell会话。

2.2 PE结构:文件头详细解析

PE结构是`Windows`系统下最常用的可执行文件格式,理解PE文件格式不仅可以理解操作系统的加载流程,还可以更好的理解操作系统对进程和内存相关的管理知识,DOS头是PE文件开头的一个固定长度的结构体,这个结构体的大小为64字节(0x40)。DOS头包含了很多有用的信息,该信息可以让Windows操作系统使用正确的方式加载可执行文件。从DOS文件头`IMAGE_DOS_HEADER`的`e_lf

2.6 PE结构:导出表详细解析

导出表(Export Table)是Windows可执行文件中的一个结构,记录了可执行文件中某些函数或变量的名称和地址,这些名称和地址可以供其他程序调用或使用。当PE文件执行时Windows装载器将文件装入内存并将导入表中登记的DLL文件一并装入,再根据DLL文件中函数的导出信息对可执行文件的导入表(IAT)进行修正。

4.5 MinHook 挂钩技术

MinHook是一个轻量级的Hooking库,可以在运行时劫持函数调用。它支持钩子API函数和普通函数,并且可以运行在32位和64位Windows操作系统上。其特点包括易于使用、高性能和低内存占用。MinHook使用纯汇编语言实现,在安装和卸载钩子时只需要短暂地锁定目标线程,因此对目标线程的影响非常小。

5.0 CRC32校验技术概述

CRC校验技术是用于检测数据传输或存储过程中是否出现了错误的一种方法,校验算法可以通过计算应用与数据的循环冗余校验(CRC)检验值来检测任何数据损坏。通过运用本校验技术我们可以实现对特定内存区域以及磁盘文件进行完整性检测,并以此来判定特定程序内存是否发生了变化,如果发生变化则拒绝执行,通过此种方法来保护内存或磁盘文件不会被非法篡改。总之,内存和磁盘中的校验技术都是用于确保数据和程序的完整性和安全性

5.2 磁盘CRC32完整性检测

CRC校验技术是用于检测数据传输或存储过程中是否出现了错误的一种方法,校验算法可以通过计算应用与数据的循环冗余校验(CRC)检验值来检测任何数据损坏。通过运用本校验技术我们可以实现对特定内存区域以及磁盘文件进行完整性检测,并以此来判定特定程序内存是否发生了变化,如果发生变化则拒绝执行,通过此种方法来保护内存或磁盘文件不会被非法篡改。总之,内存和磁盘中的校验技术都是用于确保数据和程序的完整性和安全性

Nginx命令(查询nginx配置文件)

Nginx命令(查询nginx配置文件) Nginx是一款轻量级的Web 服务器/反向代理服务器及电子邮件(IMAP/POP3)代理服务器,在BSD-like 协议下发行。其特点是占有内存少,并发能力强,事实上nginx的并发能力在同类型的网页服务器中表现较好。 Nginx常用命令 1.查看Ngin

使用containerd从0搭建k8s(kubernetes)集群

## 准备环境 准备两台服务器节点,如果需要安装虚拟机,可以参考[《wmware和centos安装过程》](https://blog.csdn.net/huashetianzu/article/details/109510266) | 机器名 | IP | 角色 | CPU | 内存 | | : :

手把手教你一套完善且高效的k8s离线部署方案

作者:郝建伟 背景 面对更多项目现场交付,偶而会遇到客户环境不具备公网条件,完全内网部署,这就需要有一套完善且高效的离线部署方案。 系统资源 | 编号 | 主机名称 | IP | 资源类型 | CPU | 内存 | 磁盘 | | -- | | | | | | | | 01 | k8s-master1

基于Spring Cache实现Caffeine、jimDB多级缓存实战

在早期参与涅槃氛围标签中台项目中,前台要求接口性能999要求50ms以下,通过设计Caffeine、ehcache堆外缓存、jimDB三级缓存,利用内存、堆外、jimDB缓存不同的特性提升接口性能, 内存缓存采用Caffeine缓存,利用W-TinyLFU算法获得更高的内存命中率;同时利用堆外缓存降低内存缓存大小,减少GC频率,同时也减少了网络IO带来的性能消耗;利用JimDB提升接口高可用、高并

CGLIB动态代理对象GC问题排查

## 一、问题是怎么发现的 最近有个新系统开发完成后要上线,由于系统调用量很大,所以先对核心接口进行了一次压力测试,由于核心接口中基本上只有纯内存运算,所以预估核心接口的压测QPS能够达到上千。 压测容器配置:4C8G 先从10个并发开始进行发压,结果cpu一下就飙升到了100%,但是核心接口的qp