PrimiHub一款由密码学专家团队打造的开源隐私计算平台,专注于分享数据安全、密码学、联邦学习、同态加密等隐私计算领域的技术和内容。 随着智能城市建设的快速推进,各种数据采集技术和设备在城市管理中的应用越来越广泛。这些技术和设备在提升城市管理效率、优化资源分配和提高公共安全方面发挥着重要作用。然而
隐私保护和身份验证是现代社会中的关键问题,尤其是在数字化时代。零知识证明(Zero-Knowledge Proofs,简称ZKP)提供了一种独特的解决方案,它允许个体在不泄露任何额外信息的情况下,证明某个陈述的真实性。以下是零知识证明在隐私保护和身份验证中的一些潜在应用。
学习&转载文章:【隐私计算笔谈】MPC系列专题(十):安全多方计算下的集合运算 集合运算 集合可以通俗地描述为确定的一堆东西。如有一个集合$𝐴$,一个元素$𝑐$要么属于集合$𝐴$,记做$𝑐\in 𝐴$;要么不属于集合$𝐴$,记做$𝑐∉𝐴$,元素$𝑐$不能既属于集合$𝐴$又不属于$
隐私计算算法工程师助理 公司介绍 官网:地址 同盾科技是以大数据,云计算和人工智能为基础的智能决策与分析大数据&AI公司,我们服务金融,政企,互联网,物流等行业 目前融资到D+轮,现有员工近1300人,总部在杭州,北上广深成都,西安新加坡等地有分支机构 面试问题 1、自我介绍 2、介绍一下发表的论文
摘要 隐私集合求交(PSI)是安全多方计算(MPC)中的一种密码学技术,它允许参与计算的双方,在不获取对方额外信息(除交集外的其它信息)的基础上,计算出双方数据的交集。隐私集合求交在数据共享,广告转化率,联系人发现等领域有着广泛的应用空间。本文对隐私集合求交的各项实现技术做了介绍和对比,对隐私集合求
如今,组织在收集、存储敏感的个人信息以及在外部环境(例如云)中处理、共享个人信息时, 越来越关注数据安全。这是遵守隐私法规的强需求:例如美国加利福尼亚州消费者隐私法 (CCPA)、欧盟通用数据保护条例 (GDPR) 和世界各地的其他新兴法规,以及中国的《数安法》《个保法》等,都对安全处理敏感数据提出了要求。
随着政策鼓励与技术成熟,开源作为一种新型的生产方式、创新的协作方式,正逐渐渗入到千行百业,并在国家战略层面的得到了肯定和支持
2022年12月28日,由中国信息通信研究院、中国通信标准化协会指导,隐私计算联盟、中国通信标准化协会大数据技术标准推进委员会联合主办的“2022可信隐私计算峰会”在京召开。
1.隐私政策是怎么样的?收集哪些信息? 关于Scan Kit的隐私政策及收集的信息,请查看SDK隐私安全说明。 Android:SDK隐私安全说明 iOS:SDK隐私安全说明 2.如何使用多码识别?多码模式下如何实现指定条码?多码模式的坐标支持返回坐标么?多码模式下实现自动放大? 1)统一扫码服务支
Chatgpt的风靡,也让其背后LLM(大型语言模型)技术中的数据隐私保护问题进一步受到关注。作为国内隐私计算行业领军者,京东科技全程深度参与了「4大报告+3大标准」的编写研制工作,取得丰硕成果。
在游戏行业,玩家体验的个性化是提升用户粘性和满意度的关键。随着技术的发展,游戏公司现在可以利用大量的玩家数据来定制游戏体验。然而,这同时也带来了对玩家隐私保护的挑战。隐私计算技术的出现为这一问题提供了解决方案,它允许在不泄露个人数据的情况下分析和利用数据。
在数字时代,隐私保护已成为全球关注的焦点。隐私计算作为解决数据隐私问题的关键技术,其核心目标是在不泄露个人或敏感信息的前提下,实现数据的计算和分析。在这一领域,零知识证明和同态加密扮演着至关重要的角色。本文将深入探讨这两种技术如何在隐私计算中发挥作用,以及它们之间的异同。
> 学习&转载文章:[安全多方计算(2):隐私信息检索方案汇总分析](https://mp.weixin.qq.com/s/7JF-g6m8RLPWf0QgbYE-7g) ## 前言 **多头贷问题**是网络小额贷款平台放款时所要考虑的一个重要问题。假设银行A有一潜在贷款客户小张,银行A为了足够多的
学习&转载文章:安全多方计算(5):隐私集合求交方案汇总分析 前言 随着数字经济时代的到来,数据已成为一种基础性资源。然而,数据的泄漏、滥用或非法传播均会导致严重的安全问题。因此,对数据进行隐私保护是现实需要,也是法律要求。隐私集合求交(Private Set Intersection, PSI)作
学习&&转载文章:隐私计算安全基座-数据库安全 数据安全 用数据生命周期的全链路思考,可以得出如下的结论: 数据存储态安全:对数据的存储安全负责,保障数据的静存储态安全,不泄露。 数据传输态安全:对数据的转移安全负责,保障数据的转移态安全,不泄露。 数据计算态安全:对数据的动态计算的安全负责,保障数
学习&&转载文章: 【隐私计算笔谈】MPC系列专题(二):模型和Shamir秘密共享机制 【隐私计算笔谈】MPC系列专题(十一):共享随机数和比特分享 【隐私计算笔谈】MPC系列专题(十二):比特比较 【隐私计算笔谈】MPC系列专题(十三):比特分解【这部分没看懂,欢迎交流~】 通过共享随机数来实现
> 密码研发和隐私计算研发 ## MAC和Hash的区别? + MAC:消息验证码 + Hash:消息摘要/杂凑 ![image-20230314225004958](https://markdown-1259209976.cos.ap-beijing.myqcloud.com/uPic/2023/
随着互联网的不断普及,越来越多老百姓使用智能设备触达互联网。但用户经常发现自己无意间提到的东西,打开App就收到相关产品的广告推送,甚至有人怀疑手机App是通过麦克风来窃取自己平时聊天信息中的关键词进行定向的广告推送。 这种怀疑不无道理,与传统广告相比,如今的媒体广告主投放的广告定位更准确、形式更丰
如何在保护各机构数据隐私的前提下,通过技术手段破解数据隐私保护难题,联邦学习是解决这一问题的有效方式。
摘要:本文介绍华为可信智能计算服务TICs是如何助力城市跨部门数据实现隐私计算的。 本文分享自华为云社区《基于华为隐私计算产品TICS实现城市跨部门数据隐私计算,助力实现普惠金融》,作者: dayu_dls。 华为云可信智能计算服务TICS,旨在打破组织内部、行业内部、跨行业之间的数据孤岛,基于可信