评估一个训练好的模型需要评估指标,比如正确率、查准率、查全率、F1值等。当然不同的任务类型有着不同的评估指标,而HuggingFace提供了统一的评价指标工具。 1.列出可用的评价指标 通过list_metrics()函数列出可用的评价指标: def list_metric_test(): # 第4
之所以写这篇是因为有朋友私下让我完善下基建建设的标准和四个阶梯划分,然后让我一定要把腾讯和百度加到基建建设的排名中(看热闹不嫌事大)。 基建infra建设四个考察维度 1)工具链完整性:该有的工具是否都有了 2)功能完备性和易用性:工具该具备的功能是否都有了,是否容易使用 3)支持和服务:是否有人持
摘要:为了评价模型的泛化能力,即判断模型的好坏,我们需要用某个指标来衡量,有了评价指标,就可以对比不同模型的优劣,并通过这个指标来进一步调参优化模型。 本文分享自华为云社区《目标检测模型的评价指标详解及代码实现》,作者:嵌入式视觉。 前言 为了了解模型的泛化能力,即判断模型的好坏,我们需要用某个指标
一、概述 分类模型是机器学习中一种最常见的问题模型,在许多问题场景中有着广泛的运用,是模式识别问题中一种主要的实现手段。分类问题概况起来就是,对一堆高度抽象了的样本,由经验标定了每个样本所属的实际类别,由特定算法训练得到一个分类器,输入样本属性即自动计算出其所属类别,从而完成特定的识别任务。依实现原
一、概述 作为机器学习领域的重要内容之一,聚类模型在许多方面能够发挥举足轻重的作用。所谓聚类,就是通过一定的技术方法将一堆数据样本依照其特性划分为不同的簇类,使得同一个簇内的样本有着更相近的属性。依不同的实现策略,聚类算法有很多种,如基于距离的k-means、基于密度的DBSCAN等。在聚类完成之后
一、概述 在一般形式的回归问题中,会得到系列的预测值,它们与真实值(ground truth)的比较表征了模型的预测能力,为有效量化这种能力,常见的性能评价指标有可解释方差(EVS)、平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)、决定系数(R2)等。值得一提的是,回归问题分单输
大侠幸会,在下全网同名[算法金] 0 基础转 AI 上岸,多个算法赛 Top [日更万日,让更多人享受智能乐趣] [Sebastian Raschka 2018] Model Evaluation, Model Selection, and Algorithm Selection in Machin
我们在使用分类算法训练数据后,评价分类模型的优劣时,经常会遇到一个词,“基尼系数”。那么,什么是基尼系数呢? 本文将尝试用最简单的方式介绍什么是“基尼系数”以及它的计算方法和意义。希望能让大家对基尼系数有个直观的印象,而不仅仅是记住它枯燥的计算公式。 1. 从分类模型开始 首先,先假设有一个分类案例
最近在不少自媒体上看到有关.NET与C#的资讯与评价,感觉大家对.NET与C#还是不太了解,尤其是对2016年6月发布的跨平台.NET Core 1.0,更是知之甚少。在考虑一番之后,还是决定写点东西总结一下,也回顾一下.NET的发展历史。 首先,你没看错,.NET是跨平台的,可以在Windows、
今天发布2款博客园T恤,一款上架预售,见上图中的前两张照片;一款上照预览,见上图中的后两张照片,未敢上架,先看看大家的评价。在第三版星星款设计被放弃后,我们痴星不改,还是想推出带星星的幸运闪系列T恤
近期参加NLP领域CCL2024评测,现将赛题背景和实现方法分享,推理文本纠错领域的发展。 1、背景信息 随着教育的发展和网络的普及,作文评价的规模越来越大,人工评改作文的成本和效率成为一大难题。为了解决这一问题,许多研究者和机构开始探索利用计算机技术来实现作文的自动评改,通过分析作文的语言、内容、
绪论 一、核心术语 1.预期目标 给干系人绩效域一个KPI(预期目标)来对其衡量其做的好不好,这个KPI就叫做预期目标. 2.指标及检查方法 要对目标是否做好进行评价,这个评价就是指标及检查方法 3.绩效要点 为了完成预期目标的三个KPI,应该做什么工作或者应该关注哪几个方面的活动,来达成预期目标,
一:代码前思路解析 建一个商城类(Store) A.开店(写一个开店的方法,添加商品信息) 商家:店名 1.商品 2.有没有货(相同货的个数) 3.价格 4.评价(是用户评价的) 5.销售量 属性B.用户买东西(写一个购物的方法,先选择商城) 选择一个商城及购买对应商城商品,购买的数量要大于库存数量
https://www.jianshu.com/p/b192fda09c02 一、软件性能测试目标 软件性能测试的目的主要有以下三点: 1. 评价系统当前性能,判断系统是否满足预期的性能需求。 2. 寻找软件系统可能存在的性能问题,定位性能瓶颈并解决问题。 3. 判定软件系统的性能表现,预见系统负载
在上一篇文章中,我们介绍了企业云业务的成本构成以及目前面临的成本困境,以及当前企业逐步转向 FinOps 的行业趋势,这篇文章我们将详细聊聊 FinOps,包括概念、重要性以及成熟度评价指标。 随着对云服务和供应商的使用越来越多,可能会出现复杂性和管理上的挑战,导致成本超支和其他问题。曾在2018年
预处理 目录预处理一、宏定义数值宏常量字符串宏常量用define宏定义注释符号?程序的编译过程预处理中宏替换和去注释谁先谁后?如何写一个不会出现问题的宏函数do-while-zero结构do-while-zero的评价宏定义中的空格宏只能在main函数上面定义吗?宏的作用范围#undef宏替换是在函
本次分享的主题是火山引擎数智平台VeDI旗下的A/B测试平台 DataTester 实验管理架构升级与DDD实践。这里说明的一点是,代码的第一目标肯定是满足产品需求,能够满足产品需求的代码都是好代码。而本文中对代码的好坏的评价完全是从架构的视角,结合代码的可读性、可维护性与可扩展性去分析的。 在一个
本文为《深入学习 JVM 系列》第二十二篇文章 影响垃圾收集性能有三个主要的属性,垃圾收集调优又有三个基本原则,以及垃圾收集调优时需要采集的信息。如果想要对垃圾收集进行调优,则需要根据实际场景对不同属性做出取舍,理解调优的原则以及收集什么信息。 性能属性 吞吐量 吞吐量是评价垃圾收集器能力的重要指标
评估 LLM 应用 1.一般评估思路 首先,你会在一到三个样本的小样本中调整 Prompt ,尝试使其在这些样本上起效。 随后,当你对系统进行进一步测试时,可能会遇到一些棘手的例子,这些例子无法通过 Prompt 或者算法解决。 最终,你会将足够多的这些例子添加到你逐步扩大的开发集中,以至于手动运行
评审目的 代码评审的目的就是为了保证公司整体代码的健康状况随着不断迭代,始终保持一个较高的水平,所有在评审中使用的工具和流程都应是为此目的而设计的。 评审原则 鼓励质疑 保持代码风格,遵守开发规范 优先设计原则,尊重个人偏好 重视每一行代码 尽可能采用面对面的形式 评审时机 研发流程应该是严密的、有