论文提出了一种可扩展的多数据集目标检测器(ScaleDet),可通过增加训练数据集来扩大其跨数据集的泛化能力。与现有的主要依靠手动重新标记或复杂的优化来统一跨数据集标签的多数据集学习器不同,论文引入简单且可扩展的公式来为多数据集训练产生语义统一的标签空间,通过视觉文本对齐进行训练,能够学习跨数据集的
论文重新审视了深度神经网络中的不确定性估计技术,并整合了一套技术以增强其可靠性。论文的研究表明,多种技术(包括模型正则化、分类器改造和优化策略)的综合应用显着提高了图像分类任务中不确定性预测的准确性 来源:晓飞的算法工程笔记 公众号 论文: SURE: SUrvey REcipes for buil
论文将Multiscale Vision Transformers (MViTv2) 作为图像和视频分类以及对象检测的统一架构进行研究,结合分解的相对位置编码和残差池化连接提出了MViT的改进版本 来源:晓飞的算法工程笔记 公众号 论文: MViTv2: Improved Multiscale Vi
论文提出了多尺度视觉Transformer模型MViT,将多尺度层级特征的基本概念与Transformer模型联系起来,在逐层扩展特征复杂度同时降低特征的分辨率。在视频识别和图像分类的任务中,MViT均优于单尺度的ViT。 来源:晓飞的算法工程笔记 公众号 论文: Multiscale Vision
论文提出了用于快速图像分类推理的混合神经网络LeVIT,在不同的硬件平台上进行不同的效率衡量标准的测试。总体而言,LeViT在速度/准确性权衡方面明显优于现有的卷积神经网络和ViT,比如在80%的ImageNet top-1精度下,LeViT在CPU上比EfficientNet快5倍 来源:晓飞的算
论文标题:Segment Angthing 论文作者: Alexander Kirillov Eric Mintun Nikhila Ravi Hanzi Mao... 论文地址:2304.02643 (arxiv.org) 声明:小编翻译论文仅为学习,如有侵权请联系小编删除博文,谢谢! 小编是一个
论文基于实验验证,为数据需求预测这一问题提供了比较有用的建议,详情可以直接看看Conclusion部分。 来源:晓飞的算法工程笔记 公众号 论文: How Much More Data Do I Need? Estimating Requirements for Downstream Tasks 论
设计一个更优的、可理解的、面向最终目标的框架。基于这个面向Planning的思想,他们提出了 Unified Autonomous Driving (UniAD)方案,一种新的自动驾驶框架。这个方案从全局视角出发,让智驾的各个模块特征提取可以互相补充,各个任务之间可以通过统一的查询接口通信。在此基础...
论文主要处理Vision Transformer中的性能问题,采用推理速度不同的级联模型进行速度优化,搭配层级间的特征复用和自注意力关系复用来提升准确率。从实验结果来看,性能提升不错 来源:晓飞的算法工程笔记 公众号 论文: Not All Images are Worth 16x16 Words:
论文提出了经典的Vision Transormer模型Swin Transformer,能够构建层级特征提高任务准确率,而且其计算复杂度经过各种加速设计,能够与输入图片大小成线性关系。从实验结果来看,Swin Transormer在各视觉任务上都有很不错的准确率,而且性能也很高 来源:晓飞的算法工程
再一次轮到讲自己的paper!耶,宣传一下自己的工作,顺便完成中文博客的解读 方便大家讨论。 Title Picture Reference and pictures paper: https://arxiv.org/abs/2401.16122 code: https://github.com/K
论文链接:Unlocking the Power of Cross-Dimensional Semantic Dependency for Image-Text Matching (ACM MM23) 代码主页:https://github.com/CrossmodalGroup/X-Dim 主要优
论文标题:Uniformed Students Student-Teacher Anomaly Detection With Discriminative Latent Embbeddings 论文作者: Paul Bergmann Michael Fauser David Sattlegger C
论文提出CeiT混合网络,结合了CNN在提取低维特征方面的局部性优势以及Transformer在建立长距离依赖关系方面的优势。CeiT在ImageNet和各种下游任务中达到了SOTA,收敛速度更快,而且不需要大量的预训练数据和额外的CNN蒸馏监督,值得借鉴 来源:晓飞的算法工程笔记 公众号 论文:
论文设计了用于密集预测任务的纯Transformer主干网络PVT,包含渐进收缩的特征金字塔结构和spatial-reduction attention层,能够在有限的计算资源和内存资源下获得高分辨率和多尺度的特征图。从物体检测和语义分割的实验可以看到,PVT在相同的参数数量下比CNN主干网络更强大
论文提出了T2T-ViT模型,引入tokens-to-token(T2T)模块有效地融合图像的结构信息,同时借鉴CNN结果设计了deep-narrow的ViT主干网络,增强特征的丰富性。在ImageNet上从零训练时,T2T-ViT取得了优于ResNets的性能MobileNets性能相当 来源:晓
在本文中,我们的目标是在扫描大规模源代码漏洞时实现可扩展性和准确性,我们提出了一个新颖的想法,可以在保留程序细节的同时有效地将函数的源代码转换为图像,我们还对一个超过2500万行代码的案例进行了研究,结果表明VulCNN可以检测到大规模漏洞。通过扫描报告,我们终于发现了 73 个 NVD 中未报告的...
本文介绍基于Visio软件绘制技术路线图、流程图、工作步骤图等的方法~
http://arthurchiao.art/blog/ceph-osdi-zh/ 译者序 本文翻译自 2006 年 Sage Weil 的论文:Ceph: A Scalable, High-Performance Distributed File System (PDF)。 标题直译为:《Ceph
http://arthurchiao.art/blog/google-bigtable-zh/ 译者序 本文翻译自 2006 年 Google 的分布式存储经典论文:Bigtable: A Distributed Storage System for Structured Data (PDF)。 标