本文详细介绍了python 无监督生成模型,主要介绍了无监督生成模型是生成对抗网络(Generative Adversarial Networks, GANs)的方法。
我们在前面介绍的都是有监督的知识图谱对齐方法,它们都需要需要已经对齐好的实体做为种子(锚点),但是在实际场景下可能并没有那么多种子给我们使用。为了解决这个问题,有许多无监督/自监督的知识图谱对齐方法被提出。其中包括基于GAN的方法,基于对比学习的方法等。他们在不需要事先给定锚点的情况下将来自不同知识图谱实体embeddings映射到一个统一的空间。
目录有监督学习含义回归单元线性回归含义代价函数梯度下降法将梯度下降法与代数函数结合在一起多元线性回归含义多元假设函数多元代价函数多元梯度下降法将多元梯度下降法与代数函数结合在一起特征缩放啥是特征缩放?公式均值归一化学习率的调整的建议介绍建议正规方程解释公式如何选择梯度下降法或正规方程?两者之间的优缺
本文介绍ICLR2023的方法Spark,实现了基于CNN的MAE。
本文的工作研究了无监督的目标检测和实例分割,不使用人工标注。
清除标注错误的数据 监督学习问题的数据由输入\(x\)和输出标签 \(y\) 构成,如果观察一下的数据,并发现有些输出标签 \(y\) 是错的。的数据有些标签是错的,是否值得花时间去修正这些标签呢? 看看在猫分类问题中,图片是猫,\(y=1\);不是猫,\(y=0\)。所以假设看了一些数据样本,发现
摘要:该论文将同一图像不同视角图像块内的语义一致的图像区域视为正样本对,语义不同的图像区域视为负样本对。 本文分享自华为云社区《[NeurIPS 2022]基于语义聚合的对比式自监督学习方法》,作者:Hint 。 1.研究背景 近些年来,利用大规模的强标注数据,深度神经网络在物体识别、物体检测和物体
摘要:本文提出了一种针对文字识别的多模态半监督方法,具体来说,作者首先使用teacher-student网络进行半监督学习,然后在视觉、语义以及视觉和语义的融合特征上,都进行了一致性约束。 本文分享自华为云社区《一种针对文字识别的多模态半监督方法》,作者: Hint 。 摘要 直到最近,公开的真实场
基础 [自然语言处理(NLP)](https://www.cnblogs.com/vipsoft/p/17450994.html) [自然语言处理PaddleNLP-词向量应用展示](https://www.cnblogs.com/vipsoft/p/17451860.html) [自然语言处理(N
摘要:本文提出了一种针对文字识别的半监督方法。区别于常见的半监督方法,本文的针对文字识别这类序列识别问题做出了特定的设计。 本文分享自华为云社区《[CVPR 2022] 不使用人工标注提升文字识别器性能》,作者:Hint。 本文提出了一种针对文字识别的半监督方法。区别于常见的半监督方法,本文的针对文
这一章介绍通过扩写,改写,以及回译等半监督样本挖掘方案对种子样本进行扩充,提高种子指令样本的多样性和复杂度,这里我们分别介绍Microsoft,Meta和IBM提出的三个方案。
微调类型简介 1. SFT监督微调:适用于在源任务中具有较高性能的模型进行微调,学习率较小。常见任务包括中文实体识别、语言模型训练、UIE模型微调。优点是可以快速适应目标任务,但缺点是可能需要较长的训练时间和大量数据。 2. LoRA微调:通过高阶矩阵秩的分解减少微调参数量,不改变预训练模型参数,新
前几章我们讨论了RLHF的样本构建优化和训练策略优化,这一章我们讨论两种不同的RL训练方案,分别是基于过程训练,和使用弱Teacher来监督强Student 循序渐进:PRM & ORM 想要获得过程
论文提出CeiT混合网络,结合了CNN在提取低维特征方面的局部性优势以及Transformer在建立长距离依赖关系方面的优势。CeiT在ImageNet和各种下游任务中达到了SOTA,收敛速度更快,而且不需要大量的预训练数据和额外的CNN蒸馏监督,值得借鉴 来源:晓飞的算法工程笔记 公众号 论文:
> 本篇博客详细介绍了Python机器学习库Scikit-learn的使用方法和主要特性。内容涵盖了如何安装和配置Scikit-learn,Scikit-learn的主要特性,如何进行数据预处理,如何使用监督学习和无监督学习算法,以及如何评估模型和进行参数调优。本文旨在帮助读者深入理解Scikit-
众所周知,个性化推荐系统能够根据用户的兴趣、偏好等信息向用户推荐相关内容,使得用户更感兴趣,从而提升用户体验,提高用户粘度,之前我们曾经使用协同过滤算法构建过个性化推荐系统,但基于显式反馈的算法就会有一定的局限性,本次我们使用无监督的Lda文本聚类方式来构建文本的个性化推荐系统。 推荐算法:协同过滤
在当今高速发展的技术环境中,企业越来越依赖技术作为创新和竞争优势的战略驱动力。首席信息官(CIO)在企业中负责监督信息和计算机技术的管理和实施,以交付预期的业务成果。在技术是业务核心的公司中,CIO 这一职位对于推动战略、技术和管理计划以实现业务增长至关重要。 在现有的解决方案中,平台工程逐渐成为现
日志在 IT 行业中被广泛使用,日志的异常检测对于识别系统的运行状态至关重要。解决这一问题的传统方法需要复杂的基于规则的有监督方法和大量的人工时间成本。我们提出了一种基于自然语言处理技术运维日志异常检测模型。
转载请注明出处: 1.分析干系人管理的两大工具 1.1.权力-利益方阵 第一象限:严防死守(重点管理) 第二象限:投其所好(令其满意) 第三象限:保存关注(定期监督) 第四象限:确保知会(及时告知),采用主动咨询的方式 1.2.凸显模型 凸显模型:就是综合分析相关方权力、紧迫性和合法性,确定相关方需
摘要:我们将给猫贴一张卡通脸,给 Elon Musk 贴上小胡子,给小狗贴上驯鹿角! 本文分享自华为云社区《视频AI,给你的宠物加个表情特效!》,作者:HWCloudAI。 GAN 监督学习是一种联合端到端学习判别模型及其 GAN 生成的训练数据的方法。GANgealing将框架应用于密集视觉对齐问