http://blog.itpub.net/70024922/viewspace-2927330/ 分布式系统共识算法Paxos相信大家都不陌生,它被称为最难理解的算法不是没有道理的,首先,它的发表之路就充满了坎坷。 1990年,莱斯利·兰伯特大佬写了一篇论文,举了一个城邦选举的例子来介绍Paxos
借助So-vits我们可以自己训练五花八门的音色模型,然后复刻想要欣赏的任意歌曲,实现点歌自由,但有时候却又总觉得少了点什么,没错,缺少了画面,只闻其声,却不见其人,本次我们让AI川普的歌声和他伟岸的形象同时出现,基于PaddleGAN构建“靓声靓影”的“懂王”。 PaddlePaddle是百度开源
点击率(Click-Through Rate, CTR)预测是推荐系统、广告系统和搜索引擎中非常重要的一个环节。在这个场景中,我们通常需要根据用户的历史行为、物品的特征、上下文信息等因素来预测用户点击某个特定物品(如广告、推荐商品)的概率。 1.点击率数据预测 以下是一个简化的点击率预测示例,使用P
点评RISC-V芯片出货量突破100亿 RISC-V生态发展呈现明显加速态势,除了超过100亿核心的出货量,还有两个很明显的趋势: 1)出现一批瞄准高性能RISC-V的国内外企业,性能对标ARM Cortex-A76/A78,甚至Neoverse-N1/N2,这些企业将把RISC-V从嵌入式场景拓展
点状、线状、面状、光影 “光” = PPT高大上的秘密
点击文件 -> 新建元件库 可以添加多个元件,并将期重命名 保存元件库 新建页面 添加元件,选择自建的元件库 导入后就会发现我的原件库 这样就可以使用我们自定义的元件库了
如果点了【快速回到原点】不生效,可能是因为输入法导致。
春节期间,小鱼干读了一篇万字回顾数据库行业的文章,在文字缝隙里我看见了两个词:AI+ 和数据两个词(当然数据是废话,毕竟是一个数据库的回顾文)。在 GitHub 上热点趋势上,可见到 AI+ 的身影,几乎百分之九十迅速蹿红的项目都同 AI 相关。所以在兔年的开头,本期收录一些入门 AI 的项目,希望
大家有有没有这种感觉,就是怎么学习都学不会。感觉学的特别的吃力? 学自动化那会报了个班,大家也知道松勤这个线上机构吧。我报了,并且自动化代码也敲了5,6遍,很多问题也问过老师,也回答的很敷衍,也嫌我笨。那时就自我怀疑我是不是真的很笨。后来自我怀疑到我是不是不适合干这行。也很想知道大家的学习方式是什么
注入点的类型,如果有多个bean都是该类型的实现,应该如何选择呢?本篇尝试通过多种注解来选择
PHP 唯一的爽点就是开发起来「哇真快」这刚好和外包公司的需求相契合,在 Web 领域的芒荒年代 PHP 以王者姿态傲视群雄。
传送锚点:https://www.luogu.com.cn/problem/P1003 题目描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯。一共有 \(n\) 张地毯,编号从 \(1\) 到 \(n\)。现在将这些地毯按照编号从小到大
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 前言 虽然血压(BP)的测量现在广泛地由自动无创血压(NIBP)监测设备进行,因为它们不需要熟练的临床医生,也不存在并发症的风险,但其准确性仍存疑。本研究开发了一种新的基于端到端深度学习的算法,该算法直接
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 关键词识别 (KWS) 是人机界面的主要组成部分。 KWS 的目标是在低误报 (FA) 率下最大化检测精 度,同时最小化占用空间大小、延迟和复杂性。为 了实现这些目标,我们研究了卷积循环神经网络 (CRN
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 声音事件的分类精度与特征提取有很强的关系。本文将深度特征用于环境声音分类(ESC)问题。深层特征是通过使用新开发的卷积神经网络(CNN)模型的全连接层来提取的,该模型通过频谱图图像以端到端的方式进行训练。
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 婴儿哭闹识别是一项具有挑战性的任务,因为很难确定能够让研究人员清楚区分不同类型哭闹的语音特征。然而,婴儿哭闹被视为一种不同的言语交流方式。利用适当的人工智能模型,利用梅尔倒谱系数(MFCC)可以区分婴儿哭
今天我打算整点儿不一样的内容,通过之前学习的TransformerMap和LazyMap链,想搞点不一样的,所以我关注了另外一条链DefaultedMap链,主要调用链为: 调用链详细描述: ObjectInputStream.readObject() DefaultedMap.readObject
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 咳嗽检测是一种很有前途的检测呼吸道疾病各种病理严重程度的技术。自动咳嗽检测系统的开发将成为早期诊断的最佳跟踪工具。长期以患者为中心的远程咳嗽严重程度监测将改变医疗基础设施的游戏规则,因为在过去几十年中,远
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 我们提出了一种利用由长短期记忆 (LSTM) 单元构建的深度循环神经网络来降 噪心电图信号 (ECG) 的新方法。该网络使 用动态模型 ECG 生成的合成数据进行预训 练,并使用来自 Physionet
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 打鼾是一种普遍的症状,严重影响睡眠呼吸障碍患者(单纯打鼾者)、阻塞性睡眠呼吸暂停(OSA)患者及其床伴的生活质量。研究表明,打鼾可用于OSA的筛查和诊断。因此,从夜间睡眠呼吸音频中准确检测打鼾声一直是最重