[转帖]Redis中Key的过期策略和淘汰机制

Key的过期策略 Redis的Key有3种过期删除策略,具体如下: 1. 定时删除 原理:在设置键的过期时间的同时,创建一个定时器(timer),让定时器在键的过期时间来临时,立即执行对键的删除操作优点:能够很及时的删除过期的Key,能够最大限度的节约内存缺点:对CPU时间不友好,如果过期的Key比

[转帖]Redis系列(十七)、Redis中的内存淘汰策略和过期删除策略

我们知道Redis是分布式内存数据库,基于内存运行,可是有没有想过比较好的服务器内存也不过几百G,能存多少数据呢,当内存占用满了之后该怎么办呢?Redis的内存是否可以设置限制? 过期的key是怎么从内存中删除的?不要怕,本篇我们一起来看一下Redis的内存淘汰策略是如何释放内存的,以及过期的key

Redis系列11:内存淘汰策略

Redis系列1:深刻理解高性能Redis的本质 Redis系列2:数据持久化提高可用性 Redis系列3:高可用之主从架构 Redis系列4:高可用之Sentinel(哨兵模式) Redis系列5:深入分析Cluster 集群模式 追求性能极致:Redis6.0的多线程模型 追求性能极致:客户端缓

Redis系列19:LRU内存淘汰算法分析

[Redis系列1:深刻理解高性能Redis的本质](https://www.cnblogs.com/wzh2010/p/15886787.html "Redis系列1:深刻理解高性能Redis的本质") [Redis系列2:数据持久化提高可用性](https://www.cnblogs.com/w

Redis系列20:LFU内存淘汰算法分析

[Redis系列1:深刻理解高性能Redis的本质](https://www.cnblogs.com/wzh2010/p/15886787.html "Redis系列1:深刻理解高性能Redis的本质") [Redis系列2:数据持久化提高可用性](https://www.cnblogs.com/w

[转帖]Redis进阶(发布订阅,PipeLine,持久化,内存淘汰)

目录 1、发布订阅 1.1 什么是发布订阅 1.2 客户端实例演示 1.3 Java API演示 1.4 Redis发布订阅和rabbitmq的区别 2、批量操作 2.1 普通模式与 PipeLine 模式 2.2 适用场景 2.3 源码解析 2.4 Pipelining的局限性 2.5 事务与 L

Redis内存兜底策略——内存淘汰及回收机制

Redis内存兜底策略——内存淘汰及回收机制

Lfu缓存在Rust中的实现及源码解析

综上所述,LFU算法通过跟踪数据项的访问频次来决定淘汰对象,适用于数据访问频率差异较大的场景。与LRU相比,LFU更能抵御偶发性的大量访问请求对缓存的冲击。然而,LFU的实现较为复杂,需要综合考虑效率和公平性。在实际应用中,应当根据具体的数据访问模式和系统需求,灵活选择和调整缓存算法,以达到最优的性...

(四)Redis 缓存应用、淘汰机制

1、缓存应用 一个系统中不同层面数据访问速度不一样,以计算机为例,CPU、内存和磁盘这三层的访问速度从几十 ns 到 100ns,再到几 ms,性能的差异很大,如果每次 CPU 处理数据时都要到磁盘读取数据,系统运行速度会大大降低。 所以,计算机系统中,默认有两种缓存: (1)CPU 里面的末级缓存

[转帖]国发终于成功了!歼15开始换装太行发动机,国产战机全面淘汰俄发

https://www.toutiao.com/article/7169123680814105095/?wid=1670030647459 在刚结束的珠海航展上,国产太行发动机首次以家族的形式亮相,展出了包括二元矢量版本和轴对称矢量版本在内的5款太行发动机,让广大军迷大呼过瘾。而央视23号播出的《

[转帖]Redis各版本特性汇总

redis4redis5redis6redis6.2重大特性1.模块系统 2.PSYNC2 3.LFU淘汰策略 4.混合RDB-AOF持久化 5.LAZY FREE延迟释放 6.MEMORY内存分析命令 7.支持NAT/DOCKER 8.主动碎片整理 1.新增Stream数据类型 2.新增Redis

[转帖]Redis各版本特性汇总

redis4redis5redis6redis6.2重大特性1.模块系统 2.PSYNC2 3.LFU淘汰策略 4.混合RDB-AOF持久化 5.LAZY FREE延迟释放 6.MEMORY内存分析命令 7.支持NAT/DOCKER 8.主动碎片整理 1.新增Stream数据类型 2.新增Redis

Lru-k在Rust中的实现及源码解析

Lru-k与lru的区别在于多维护一个队列,及每个元素多维护一个次数选项,对于性能的影响不大,仅仅多耗一点cpu,但是可以相应的提高命中率,下一章将介绍LFU按频次的淘汰机制。

Lru在Rust中的实现, 源码解析

源码剖析-LRU(Least Recently Used)是一种常用的页面置换算法,其核心思想是选择最近最久未使用的页面予以淘汰。

Android 内存缓存框架 LruCache 的实现原理,手写试试?

本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问。 前言 大家好,我是小彭。 在之前的文章里,我们聊到了 LRU 缓存淘汰算法,并且分析 Java 标准库中支持 LUR 算法的数据结构 LinkedHashMap。当时,我们使用 LinkedHashMap 实

包管理工具npm和Yarn的区别,我们该如何选择?

好家伙,学习新工具 1.为什么我们需要包管理器? 关于npm我们已经知道了,这是我们项目的包管理器, 我们现在用的无比顺手的工具,都是在无数的竞争中杀出来的,他们淘汰了无数的产品 首先,倘若我们不使用npm,那么我们应该如何去新建一个前端项目? 纯手工,把我们项目需要的项目一个个下载到我们的项目里面

[转帖]redis惰性删除 lazy free 源码剖析,干货满满

目录 前言 数据删除场景 lazy free 概念 配置 源码剖析(版本 6.2.6) 场景一:客户端执行的显示删除/清除命令 场景二:某些指令带有的隐式删除命令 场景三:删除过期数据 场景四:内存淘汰数据删除 场景五:主从同步清空从库 小结 前言 都说 redis 是单线程的,其实并不是说 red

再见RestTemplate,Spring 6.1新特性:RestClient 了解一下!

在最近发布的Spring 6.1 M2版本中,推出了一个全新的同步HTTP客户端:`RestClient`。用一句话来让Spring开发者认识`RestClient`的话:像`WebClient`一样具备流畅API的`RestTemplate`。所以,`RestClient`的使命就是淘汰已经有14

带有ttl的Lru在Rust中的实现及源码解析

TTL是Time To Live的缩写,通常意味着元素的生存时间是多长。 应用场景 数据库:在redis中我们最常见的就是缓存我们的数据元素,但是我们又不想其保留太长的时间,因为数据时间越长污染的可能性就越大,我们又不想在后续的程序中设置删除,所以我们此时需要设置过期时间来让数据自动淘汰。 sete

[转帖]一张图搞定redis内存优化及配置

https://www.jianshu.com/p/3195663af83e Redis内存优化及配置.png Redis优化及配置 Redis所有的数据都在内存中,而内存又是非常宝贵的资源。常用的内存优化方案有如下几部分:一、配置优化二、缩减键值对象三、命令处理四、缓存淘汰方案 一、配置优化 Li