VGGNet和GoogLeNet等网络都表明有足够的深度是模型表现良好的前提,但是在网络深度增加到一定程度时,更深的网络意味着更高的训练误差。误差升高的原因是网络越深,梯度弥散[还有梯度爆炸的可能性]的现象就越明显,所以在后向传播的时候,无法有效的把梯度更新到前面的网络层,靠前的网络层参数无法更新,
摘要:残差网络(ResNet)的提出是为了解决深度神经网络的“退化”(优化)问题。ResNet 通过设计残差块结构,调整模型结构,让更深的模型能够有效训练更训练。 本文分享自华为云社区《Backbone 网络-ResNet 网络详解》,作者: 嵌入式视觉 。 摘要 残差网络(ResNet)的提出是为
摘要:涂鸦线稿秒变绝美图像,ControlNet-Scribble2Img适配华为云ModelArts,提供更加便利和创新的图像生成体验,将你的想象变为真实的图像。 本文分享自华为云社区《AIGC拯救手残党:涂鸦线稿秒变绝美图像》,作者:Emma_Liu 。 ControlNet 什么是Contro
今天晚上下班回来才有空看群,群友发了一条很简单的慢SQL问怎么优化。 非常简单,我自己模拟的数据。 表结构: -- auto-generated definition CREATE TABLE HHHHHH ( ID NUMBER NOT NULL PRIMARY KEY, NAME VARCHAR
理想很丰满,现实往往很残酷。 一种按照ddd的方式,根据业务来把自己需要的模块一个一个写出来,再按照模块把需要的接口一个一个的写出来,堆砌一些中间件,以及解耦的command,handler等等 ,一个项目就这么成型了。上面的项目有一个非常清晰的特点,就是按需开发,不需要去可以定义业务相关的公共的模
测试过程中,我们会遇到这样一种情况,我的作业都执行很久了,为啥还不结束,是不是作业hang掉了?
在春寒料峭的三月,万物尚未完全从冬日的沉睡中苏醒,城市的每一个角落还残留着几分凉意。3月29日,一个看似平凡的周三下午,阳光懒散地洒在李白的办公桌上,他的手指正不自觉地在键盘上跳跃,处理着日常的工作事务。正当他沉浸在数字与报表的世界中时,一阵清脆的手机铃声划破了办公室的宁静。 接听电话,传来的是一个
论文将Multiscale Vision Transformers (MViTv2) 作为图像和视频分类以及对象检测的统一架构进行研究,结合分解的相对位置编码和残差池化连接提出了MViT的改进版本 来源:晓飞的算法工程笔记 公众号 论文: MViTv2: Improved Multiscale Vi
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 准确的人类活动识别(HAR)是实现新兴的上下文感知应用程序的关键,这些应用程序需要了解和识别人类行为,例如监测独居的残疾人或老年人。传统上,HAR是通过环境传感器(例如,相机)或通过可穿戴设备(例如,具有
目前园子的主要收入来源是会员、周边、广告,在当前会员与周边收入很少的情况下,随着今年广告业务的回暖,广告收入成为维持生存的新希望。 虽然因为被百度降权失去了巨大的搜索流量,但如果找到长期合作的广告单子,基于园子高质量的用户群,依靠现有的流量,努力做好推广,通过广告收入维持基本生存是可行的。 但残酷的