yolov5 损失函数代码详解

模型的损失计算包括3个方面,分别是: 1. 定位损失 2. 分类损失 3. 置信度损失 本篇主要讲解yolov5中损失计算的实现,包括损失的逻辑实现,张量操作的细节等。

解密Prompt系列31. LLM Agent之从经验中不断学习的智能体

模型想要完成自主能力进化和自主能力获得,需要通过Self-Reflection from Past Experience来实现。那如何获得经历,把经历转化成经验,并在推理中使用呢?本章介绍三种方案

大模型和人一样需要 提高对 编程语言认知

今天在ChatGLM2-6B 的仓库里看到了这么一个issue: https://github.com/THUDM/ChatGLM2-6B/issues/122: 这位兄弟说的挺好,其中有点小错误:三星Tizen架构 其实不是架构,是属于arm架构 ,Tizen是 三星的一个操作系统。由此我想到了C

[转帖]大模型训练,英伟达Turing、Ampere和Hopper算力分析

https://www.eet-china.com/mp/a219195.html 大 GPU 优势在于通过并行计算实现大量重复性计算。GPGPU即通用GPU,能够帮助 CPU 进行非图形相关程序的运算。在类似的价格和功率范围内,GPU 能提供比CPU 高得多的指令吞吐量和内存带宽。GPGPU 架构

大模型资讯收集

大模型材料收集 360安全大模型 推动大模型 B 端落地,360 想怎么做? 企业安全智控系统 安全问答 安全运营 通用大模型 数据安全问问题 专业知识缺乏 成本控制难 专业大模型 垂直专业性 安全合规性 使用成本 知识确权 B端:面向消费者 C端:面向商家 小米大模型 雷军:小米手机已跑通大模型,

大模型研发核心:数据工程、自动化评估及与知识图谱的结合

转载:大模型研发核心:数据工程、自动化评估及与知识图谱的结合 本文将介绍大模型研发中数据工程,包括数据以及自动化相关的内容,并介绍在当前的情况下,知识图谱的定位以及如何融入到大模型的整个研发当中。 分享将会围绕下面四个方面展开: 大模型研发中的数据工程,起底当前一些大模型的数据构造以及360的构造方

模型部署 — PaddleNLP 基于 Paddle Serving 快速使用(服务化部署 - Docker)— 图像识别 + 信息抽取(UIE-X)

[TOC] 图像识别 + 信息抽取(UIE-X),部署接口供别的应用调用 最终在自己部署的环境中识别时报错,不知道是不是和GPU有关,还在尝试中 ## 流程 - 在百度 BML CodeLab 中跑好模型(免费算力,玩玩够了) - 下载模型 (比较大,我这个有10G了,可以适当做裁剪) - Linu

大模型学习 - 内网环境搭建

大模型学习 - 内网环境搭建 环境: 内网,以下安装均为离线安装 系统:Linux cdh12 3.10.0-1160.e17.x86_64 内存(377G)、GPU(P40-25G)*8) 安装Anaconda 参考: linux离线环境下安装anaconda anaconda python 版本

大模型高效开发的秘密武器:大模型低参微调套件MindSpore PET

摘要:本文介绍大模型低参微调套件——MindSpore PET。 本文分享自华为云社区《大模型高效开发的秘密武器——大模型低参微调套件MindSpore PET篇》,作者:yd_280874276 。 人工智能进入“大模型时代”。大模型具备更强泛化能力,在各垂直领域落地时,只需要进行参数微调,就可以

【asp.net core】自定义模型绑定及其验证

引言 水此篇博客,依旧是来自群里的讨论,最后说到了,在方法参数自定义了一个特性,用来绑定模型,优先从Form取,如果为空,或者不存在,在从QueryString中获取并且绑定,然后闲着无聊,就水一篇博客,如果大家有什么需求或者问题,可以找我,很高兴能为你们带来帮助。 IModelBinderFact

认识3D模型-GLTF文件

GLTF文件格式 glTF的全称(Graphics Language Transmission Format)图形语言传输格式。是三维场景和模型的标准文件格式。 glTF 核心是 JSON 文件,描述了 3D 场景的整个内容。它由场景结构本身的描述组成,内容其由定义场景图的节点的层次提供。 场景中出

分类模型的算法性能评价

一、概述 分类模型是机器学习中一种最常见的问题模型,在许多问题场景中有着广泛的运用,是模式识别问题中一种主要的实现手段。分类问题概况起来就是,对一堆高度抽象了的样本,由经验标定了每个样本所属的实际类别,由特定算法训练得到一个分类器,输入样本属性即自动计算出其所属类别,从而完成特定的识别任务。依实现原

合合信息大模型“加速器”重磅上线

大模型技术的发展和应用,预示着更加智能化、个性化未来的到来。如果将大模型比喻为正在疾驰的科技列车,语料便是珍贵的“燃料”。本次世界人工智能大会期间,合合信息为大模型打造的“加速器”解决方案备受关注。 在大模型训练的上游阶段,“加速器”中的文档解析引擎将助力大模型突破在书籍、论文、研报等文档中的版面解

英特尔 Gaudi 加速辅助生成

随着模型规模的增长,生成式人工智能的实现需要大量的推理资源。这不仅增加了每次生成的成本,而且还增加了用于满足此类请求的功耗。因此,文本生成的推理优化对于降低延迟、基础设施成本以及功耗都至关重要,其可以改善用户体验并提高文本生成任务的效率。 辅助解码是一种用于加速文本生成的流行方法。我们在英特尔 Ga

大模型重塑软件开发,华为云AI原生应用架构设计与实践分享

在ArchSummit全球架构师峰会2024上,华为云aPaaS平台首席架构师马会彬受邀出席,和技术爱好者分享AI原生应用引擎的架构与实践。

大模型高效微调-LoRA原理详解和训练过程深入分析

博客首发于我的知乎,详见:https://zhuanlan.zhihu.com/p/702629428 一、LoRA原理 LoRA(Low-Rank Adaptation of LLMs),即LLMs的低秩适应,是参数高效微调最常用的方法。 LoRA的本质就是用更少的训练参数来近似LLM全参数微调所

Yolov8和Yolov10的差异以及后处理实现

Yolo模型可分为4个维度的概念 模型版本、数据集、模型变体(Variants)、动态/静态模型。 Yolo各模型版本进展历史 Yolov(2015年华盛顿大学的 Joseph Redmon 和 Ali Farhadi 发布)Yolov2(2016年Joseph Redmon发布)Yolov3(20

回归模型的算法性能评价

一、概述 在一般形式的回归问题中,会得到系列的预测值,它们与真实值(ground truth)的比较表征了模型的预测能力,为有效量化这种能力,常见的性能评价指标有可解释方差(EVS)、平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)、决定系数(R2)等。值得一提的是,回归问题分单输

【AI应用开发全流程】使用AscendCL开发板完成模型推理

从模型推理需要的开发板环境搭建到执行推理,本文主要是为大家介绍从Ascend910训练到Ascend310推理的昇腾开发全流程。

EAV模型(实体-属性-值)的设计和低代码的处理方案(3)-- 实体属性定义及前端列表展示和数据录入处理

前面两篇随笔介绍了EAV模型(实体-属性-值)的设计思路和Winform前端对于通用查询的处理,本篇随笔继续深入EAV模型(实体-属性-值)设计的探讨,介绍实体属性的定义,以及根据不同属性的定义构建不同的输入控件处理,以及列表界面的展示。旨在结合关系型数据库的熟练使用、性能优势和MongoDB数据库...