1.摘要 在数据可视化、统计绘图和图表生成领域,Python 被广泛使用,其中 Matplotlib 是一个极其重要的基础三方库。本博客旨在介绍 Python 及其三方库 Matplotlib 的详细信息,包括 Matplotlib 的安装步骤、示例代码及使用注意事项。 2.引言 2.1 什么是Ma
前戏 NumPy(Numerical Python) 是 Python 语言中做科学计算的基础库。重在于数值计算,也是大部分Python科学计算库的基础,多用于在大型、多维数组上执行的数值运算。 快捷键的使用: 添加cell:a或者b 删除:x 修改cell的模式: m:修改成markdown模式
缺失值指数据集中某些变量的值有缺少的情况,缺失值也被称为NA(not available)值。在pandas里使用浮点值NaN(Not a Number)表示浮点数和非浮点数中的缺失值,用NaT表示时间序列中的缺失值,此外python内置的None值也会被当作是缺失值。需要注意的是,有些缺失值也会以
0. 数据说明 本项目所用数据集包含了一个家庭6个月的用电数据,收集于2007年1月至2007年6月。 这些数据包括有功功率、无功功率、电压、电流强度、分项计量1(厨房)、分项计量2(洗衣房)和分项计量3(电热水器和空调)等信息。该数据集共有260,640个测量值,可以为了解家庭用电情况提供重要的见
“我想转行做数据分析,但是我只会用Excel,不会其他的工具,有其他的数据分析工具推荐么?“ “我不会python,那我可以做数据分析吗” 大部分人对数据分析的的第一印象就是Excel,python,其实选择一个工具开始学习是需要花费学习成本的,如果不清楚这款工具能给你带来什么价值,就开始盲目学习,
一、jupyter notebook介绍 1、简介 Jupyter Notebook是基于网页的用于交互计算的应用程序。其可被应用于全过程计算:开发、文档编写、运行代码和展示结果。——Jupyter Notebook官方介绍 简而言之,Jupyter Notebook是以网页的形式打开,可以在网页页
注意:着急解决请直接看 解决方法 后的结论!!! 问题描述 朋友请我帮她安装 SPSS17 这款软件,我寻思这是啥软件,谷歌一下,发现是一个数据分析工具。 在一系列的下一步、确定后。 打开时,第 1 个惊喜弹窗来了: 【弹窗内容】应用程序无法启动,因为应用程序的并行配置不正确。有关详细信息,请参阅应
08,DataFrame创建 DataFrame是一个【表格型】的数据结构,可以看做是【由Series组成的字典】(共用同一个索引)。DataFrame由按一定顺序排列的多列数据组成。设计初衷是将Series的使用场景从一维拓展到多维。DataFrame既有行索引,也有列索引。 行索引:index
博客地址:https://www.cnblogs.com/zylyehuo/ jupyter介绍 jupyter就是anaconda提供的一个基于浏览器的可视化开发工具 jupyter的基本使用 启动 在终端中录入:jupyter notebook的指令,按下回车 新建 python3:anacon
本文由葡萄城技术团队于博客园原创并首发 转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具、解决方案和服务,赋能开发者。 目前许多企业在决策时仍沿用以往的个人经验,没有用数据说话,这在实际决策运行时会出现很多问题。在数据分析行业发展成熟的国家,90%的市场决策和经营决策都是通过数据分析研究
摘要:MRS IoTDB,它是华为FusionInsight MRS大数据套件中的时序数据库产品,在深度参与Apache IoTDB社区开源版的基础上推出的高性能企业级时序数据库产品。 本文分享自华为云社区《工业数据分析为什么要用FusionInsight MRS IoTDB?》,作者:高深广 。
本文由葡萄城技术团队于博客园原创并首发 转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具、解决方案和服务,赋能开发者。 实现数据+业务一体化的指标分析 从零售系统进化史get 数据统计的需求变更 零售系统需要的数据统计需求 V1.0 只需要获取当日累计的销售额,于是店老板就用 Excel
阅识风云是华为云信息大咖,擅长将复杂信息多元化呈现,其出品的一张图(云图说)、深入浅出的博文(云小课)或短视频(云视厅)总有一款能让您快速上手华为云。更多精彩内容请单击此处。 摘要:Spark Streaming是一种构建在Spark上的实时计算框架,扩展了Spark处理大规模流式数据的能力。本文介
通过本文的介绍,我们了解了腾讯云 BI 这款商业智能解决方案的基本功能和应用场景。从创建项目、连接数据源、数据表建模到页面搭建和推送功能的设置,我们通过一个互联网运营看板的案例,展示了如何快速入门并利用腾讯云 BI 进行数据分析和可视化。通过简单的数据编辑,我们可以轻松地设计报表,并实现数据的可视化...
本文分享自华为云社区《Python 可视化数据分析从数据获取到洞见发现的全面指南》,作者:柠檬味拥抱。 在数据科学和分析的领域中,可视化是一种强大的工具,能够帮助我们理解数据、发现模式,并得出洞见。Python 提供了丰富的库和工具,使得可视化数据分析工作流程变得高效而灵活。本文将介绍 Python
时间序列数据是数据分析中经常遇到的类型,为了更多的挖掘出数据内部的信息,我们常常依据原始数据中的时间周期,将其转换成不同跨度的周期,然后再看数据是否会在新的周期上产生新的特性。 下面以模拟的K线数据为例,演示如何使用pandas来进行周期转换。 1. 创建测试数据 首先创建测试数据,下面创建一天的K
博客地址:https://www.cnblogs.com/zylyehuo/ NumPy(Numerical Python) 是 Python 语言中做科学计算的基础库。重在于数值计算,也是大部分Python科学计算库的基础,多用于在大型、多维数组上执行的数值运算。 开发环境 anaconda 集成
博客地址:https://www.cnblogs.com/zylyehuo/ 开发环境 anaconda 集成环境:集成好了数据分析和机器学习中所需要的全部环境 安装目录不可以有中文和特殊符号 jupyter anaconda提供的一个基于浏览器的可视化开发工具 为什么学习pandas numpy已
博客地址:https://www.cnblogs.com/zylyehuo/ 开发环境 anaconda 集成环境:集成好了数据分析和机器学习中所需要的全部环境 安装目录不可以有中文和特殊符号 jupyter anaconda提供的一个基于浏览器的可视化开发工具 import matplotlib.
【使用】 【监控数据分析】 参考链接:nmon监控数据分析 性能测试中,各个服务器资源占用统计分析是一个很重要的组成部分,通常我们使用nmon这个工具来进行监控以及监控结果输出。 一、在监控阶段使用类似下面的命令 ./nmon -f write_3s_20vu.nmon -t -s 30 -c 10