1. LLM部署-TensorRT-LLM与Triton 随着LLM越来越热门,LLM的推理服务也得到越来越多的关注与探索。在推理框架方面,tensorrt-llm是非常主流的开源框架,在Nvidia GPU上提供了多种优化,加速大语言模型的推理。但是,tensorrt-llm仅是一个推理框架,可以
CoT 推理范式 默认情况下,大语言模型通常是直接给出问题的最终答案,中间推理过程是隐含的、不透明的,无法发挥出大模型最极致的理解能力。如果你用它来充当翻译,可能效果和传统的机器翻译也差不了太多。 如果我们给大模型设计一个合理的提示词,控制大模型的思考方式,就能发挥出大模型的最大功效,甚至可以让它的
OpenAI公司基于GPT模型的ChatGPT风光无两,眼看它起朱楼,眼看它宴宾客,FaceBook终于坐不住了,发布了同样基于LLM的人工智能大语言模型LLaMA,号称包含70亿、130亿、330亿和650亿这4种参数规模的模型,参数是指神经网络中的权重和偏置等可调整的变量,用于训练和优化神经网络
转载:图灵奖得主姚期智领衔提出大模型「思维」框架!逻辑推理正确率达98%,思考方式更像人类了 前言 近日我国图灵奖得主姚期智院士团队发表首篇大语言模型论文,主要解决“让大模型像人一样思考”的问题,不仅要让大模型一步步推理,还要让它们学会“步步为营”,记住推理中间的所有正确过程。具体来说,这篇新论文提
摘要:基于CANN的多路极致性能目标检测最佳实践设计解密。 本文分享自华为云社区《基于CANN的AI推理最佳实践丨多路极致性能目标检测应用设计解密》,作者: 昇腾CANN 。 当前人工智能领域,最热门的无疑是以ChatGPT为代表的各种“新贵”大模型,它们高高在上,让你无法触及。但在人们的日常生活中
论文提出了用于快速图像分类推理的混合神经网络LeVIT,在不同的硬件平台上进行不同的效率衡量标准的测试。总体而言,LeViT在速度/准确性权衡方面明显优于现有的卷积神经网络和ViT,比如在80%的ImageNet top-1精度下,LeViT在CPU上比EfficientNet快5倍 来源:晓飞的算
【C++】使用ort推理yolov10 前言:由于笔者是编导专业,想玩玩yolo模型,搜来搜去全是python,所以在学会之后写一篇文章帮助和笔者同样情况的人 环境 Windows 10 C++17 onnxruntime18.1(DML版本) opencv4.9 visual studio2022
Whisper 是当前最先进的开源语音识别模型之一,毫无疑问,也是应用最广泛的模型。如果你想部署 Whisper 模型,Hugging Face 推理终端 能够让你开箱即用地轻松部署任何 Whisper 模型。但是,如果你还想叠加其它功能,如用于分辨不同说话人的说话人分割,或用于投机解码的辅助生成,
从模型推理需要的开发板环境搭建到执行推理,本文主要是为大家介绍从Ascend910训练到Ascend310推理的昇腾开发全流程。
云端炼丹固然是极好的,但不能否认的是,成本要比本地高得多,同时考虑到深度学习的训练相对于推理来说成本也更高,这主要是因为它需要大量的数据、计算资源和时间等资源,并且对超参数的调整也要求较高,更适合在云端进行。 在推理阶段,模型的权重和参数不再调整。相反,模型根据输入数据的特征进行计算,并输出预测结果
https://github.com/ymcui/Chinese-LLaMA-Alpaca/wiki/%E4%BD%BF%E7%94%A8Transformers%E6%8E%A8%E7%90%86 Pages 32 中文文档 模型合并与转换 在线模型合并与转换(Colab) 手动模型合并与转换 模
随着大模型参数规模的不断增长,在有限的算力资源下,提升模型的推理速度逐渐变为一个重要的研究方向。常用的推理加速框架包含lmdeploy、FasterTransformer和vLLM等。 一.lmdeploy推理部署 lmdeploy由上海人工智能实验室开发,推理使用C++/CUDA,对外提供pyth
摘要:MindStudio提供精度比对功能,支持Vector比对能力。 本文分享自华为云社区《【MindStudio训练营第一季】MindStudio 高精度对比随笔》,作者:Tianyi_Li。 训练场景下,迁移原始网络 (如TensorFlow、PyTorch) ,用于NPU上执行训练,网络迁移
摘要:在做基于Ascend CL模型推理时,通常使用的有OpenCV、AIPP、DVPP这三种方式,或者是它们的混合方式,本文比较了这三种方式的特点,并以Resnet50的pytorch模型为例,结合训练营提供的sample,说明了分别是如何实现预处理的。 本文分享自华为云社区《【2023 · CA
Vicuna-13B的推理效果据说达到了ChatGPT的90%以上的能力,优于LLaMA-13B和Alpaca-13B的效果。同时Vicuna的训练成本也很低,所以尝试本地化部署一下Vicuna-7B,看看效果如何,说干就干。
近日,阿里云技术专家徐若晨在全球分布式云大会上,分享了《边缘容器云助力AI推理高效落地》的主题演讲,分享了阿里云边缘容器云如何助力开发者实现更快速的AI推理应用的迭代和部署。此外,他还分享了边缘AI推理应用在实际业务中的应用案例。 终端算力上移 云端算力下沉 客户在边缘部署时面对的挑战包括:首先,构
Atom-7B与Llama2间的关系:Atom-7B是基于Llama2进行中文预训练的开源大模型。为什么叫原子呢?因为原子生万物,Llama中文社区希望原子大模型未来可以成为构建AI世界的基础单位。目前社区发布了6个模型,如下所示: FlagAlpha/Atom-7BFlagAlpha/Llama2
摘要:近日,昇腾AI联合上海人工智能实验室,正式实现OpenMMLab算法仓库在昇腾的异构计算架构CANN上的推理部署,目前相关代码已推入MMDeploy 0.10.0版本,并在GitHub正式发布。 本文分享自华为云社区《昇腾携手OpenMMLab,支持海量算法仓库的昇腾AI推理部署》,作者:昇腾
摘要:本文介绍了昇腾计算语言AscendCL的基本概念,并以示例代码的形式介绍了如何基于AscendCL开发AI推理应用,最后配以实际的操作演示说明如何编译运行应用。 本文分享自华为云社区《基于昇腾计算语言AscendCL开发AI推理应用》,作者:昇腾CANN。 初始AscendCL AscendC
英特尔发行版 OpenVINO™ 工具套件基于 oneAPI 而开发,可以加快高性能计算机视觉和深度学习视觉应用开发速度工具套件,适用于从边缘到云的各种英特尔平台上,帮助用户更快地将更准确的真实世界结果部署到生产系统中。YOLOv10是清华大学研究人员近期提出的一种实时目标检测方法,通过消除NMS、...