NMS(non maximum suppression)即非极大值抑制,广泛应用于传统的特征提取和深度学习的目标检测算法中。 NMS原理是通过筛选出局部极大值得到最优解。 在2维边缘提取中体现在提取边缘轮廓后将一些梯度方向变化率较小的点筛选掉,避免造成干扰。 在三维关键点检测中也起到重要作用,筛选掉特征中非局部极值
现代语音增强算法利用大量递归神经网络(RNNs)实现了显著的噪声抑制。然而,大型RNN限制了助听器硬件(hearing aid hardware,HW)的实际部署,这些硬件是电池供电的,运行在资源受限的微控制器单元(microcontroller units,MCU)上,内存和计算能力有限。在这项工
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI人工智能 本文介绍了一种用于实时语音增强的双信号变换 LSTM 网络 (DTLN),作为深度噪声抑制挑战 (DNS-Challenge) 的一部分。该方法将短时傅立叶变换 (STFT) 和学习分析和综合基础
前置知识 \(\sum\) 为累加符号,\(\prod\) 为累乘符号。 上三角矩阵指只有对角线及其右上方有数值其余都是 \(0\) 的矩阵。 如果一个矩阵的对角线全部为 \(1\) 那么这个矩阵为单位矩阵记作 \(I\)。 对于矩阵 \(A_{n,m}\) 和矩阵 \(B_{m,n}\) 满足 \
第2章 数据结构 ABC语言是Python的爸爸~ 很多点子在现在看来都很有 Python 风格:序列的泛型操作、内置的元组和映射类型、用缩进来架构的源码、无需变量声明的强类型 不管是哪种数据结构,字符串、列表、字节序列、数组、XML 元素,抑或是数据库查询结果,它们都共用一套丰富的操作:迭代、切片