解析QAnything启动命令过程

一.启动命令过程日志 启动命令bash ./run.sh -c local -i 0 -b hf -m Qwen-1_8B-Chat -t qwen-7b-chat。输入日志如下所示: root@MM-202203161213:/mnt/l/20230918_RAG方向/QAnything# bas

Blazor技术入门

曾写过点儿前后端分离的项目(Vue+.NET Core Web API)、WPF和WinForm。因为Blazor不支持小程序的原因(相对于uniapp),所以只是大概知道Blazor可以写Web、PC和移动端项目,最大的特点就是使用C#代替JS。本文算是通过几个默认例子入门Blazor技术吧。 一

SPSS统计教程:卡方检验

本文简要的介绍了卡方分布、卡方概率密度函数和卡方检验,并通过SPSS实现了一个卡方检验例子,不仅对结果进行了解释,而且还给出了卡方、自由度和渐近显著性的计算过程。本文用到的数据"2.2.sav"链接为: https://url39.ctfile.com/f/2501739-875711187-f3d

什么是HuggingFace

一.HuggingFace简介 1.HuggingFace是什么 可以理解为对于AI开发者的GitHub,提供了模型、数据集(文本|图像|音频|视频)、类库(比如transformers|peft|accelerate)、教程等。 2.为什么需要HuggingFace 主要是HuggingFace把

使用编码工具

本文主要介绍了对句子编码的过程,以及如何使用PyTorch中自带的编码工具,包括基本编码encode()、增强编码encode_plus()和批量编码batch_encode_plus()。 一.对一个句子编码例子 假设想在要对句子'the quick brown fox jumps over a

Python3.7源码编译

1.下载Python3.7.0源码 git clone https://github.com/python/cpython.gitgit checkout v3.7.0 wget https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tar.xz

使用数据集工具

一.数据集工具介绍 HuggingFace通过API提供了统一的数据集处理工具,它提供的数据集如下所示: 该界面左侧可以根据不同的任务类型、类库、语言、License等来筛选数据集,右侧为具体的数据集列表,其中有经典的glue、super_glue数据集,问答数据集squad,情感分类数据集imdb

使用评价指标工具

评估一个训练好的模型需要评估指标,比如正确率、查准率、查全率、F1值等。当然不同的任务类型有着不同的评估指标,而HuggingFace提供了统一的评价指标工具。 1.列出可用的评价指标 通过list_metrics()函数列出可用的评价指标: def list_metric_test(): # 第4

使用管道工具

HuggingFace本身就是一个模型库,包括了很多经典的模型,比如文本分类、阅读理解、完形填空、文本生成、命名实体识别、文本摘要、翻译等,这些模型即使不进行任何训练也能直接得出比较好的预测结果。pipeline是HuggingFace提供的一个非常实用的工具,但是封装程度太高,需要看源码才能理解其

使用训练工具

HuggingFace上提供了很多已经训练好的模型库,如果想针对特定数据集优化,那么就需要二次训练模型,并且HuggingFace也提供了训练工具。 一.准备数据集 1.加载编码工具 加载hfl/rbt3编码工具如下所示: def load_encode(): # 1.加载编码工具 # 第6章/加载

中文情感分类

本文通过ChnSentiCorp数据集介绍了文本分类任务过程,主要使用预训练语言模型bert-base-chinese直接在测试集上进行测试,也简要介绍了模型训练流程,不过最后没有保存训练好的模型。 一.任务和数据集介绍 1.任务 中文情感分类本质还是一个文本分类问题。 2.数据集 本文使用ChnS

多层前馈神经网络及BP算法

一.多层前馈神经网络 首先说下多层前馈神经网络,BP算法,BP神经网络之间的关系。多层前馈[multilayer feed-forward]神经网络由一个输入层、一个或多个隐藏层和一个输出层组成,后向传播(BP)算法在多层前馈神经网络上面进行学习,采用BP算法的(多层)前馈神经网络被称为BP神经网络

Word2Vec模型总结

1.Huffman树的构造 解析:给定n个权值作为n个叶子节点,构造一棵二叉树,若它的带权路径长度达到最小,则称这样的二叉树为最优二叉树,也称Huffman树。数的带权路径长度规定为所有叶子节点的带权路径长度之和。Huffman树构造,如下所示: (1)将看成是有n颗树的森林; (2)在森林中选出两

残差神经网络:原理与实践

VGGNet和GoogLeNet等网络都表明有足够的深度是模型表现良好的前提,但是在网络深度增加到一定程度时,更深的网络意味着更高的训练误差。误差升高的原因是网络越深,梯度弥散[还有梯度爆炸的可能性]的现象就越明显,所以在后向传播的时候,无法有效的把梯度更新到前面的网络层,靠前的网络层参数无法更新,

TextCNN和TextRNN:原理与实践

1.TextCNN原理 CNN的核心点在于可以捕获信息的局部相关性,具体到文本分类任务中可以利用CNN来提取句子中类似N-Gram的关键信息。 (1)一维卷积:使用不同尺寸的kernel_size来模拟语言模型中的N-Gram,提取句子中的信息。即TextCNN中的卷积用的是一维卷积,通过不同ker

中文完形填空

本文通过ChnSentiCorp数据集介绍了完型填空任务过程,主要使用预训练语言模型bert-base-chinese直接在测试集上进行测试,也简要介绍了模型训练流程,不过最后没有保存训练好的模型。 一.完形填空 完形填空应该大家都比较熟悉,就是把句子中的词挖掉,根据上下文推测挖掉的词是什么。 二.

中文句子关系推断

本文通过ChnSentiCorp数据集介绍了中文句子关系推断任务过程,主要使用预训练语言模型bert-base-chinese直接在测试集上进行测试,也简要介绍了模型训练流程,不过最后没有保存训练好的模型。 一.任务简介和数据集 通过模型来判断2个句子是否连续,使用ChnSentiCorp数据集,不

基于Llama2模型的开源模型

2023年7月18日Meta开源了Llama2,在2万亿个Token上训练,可用于商业和研究,包括从7B到70B模型权重、预训练和微调的代码。相比Llama1,Llama2有较多提升,评估结果如下所示: 基于Llama2模型的开源模型如下所示: 1.WizardCoder Python V1.0 h

中文命名实体识别

本文通过people_daily_ner数据集,介绍两段式训练过程,第一阶段是训练下游任务模型,第二阶段是联合训练下游任务模型和预训练模型,来实现中文命名实体识别任务。 一.任务和数据集介绍 1.命名实体识别任务 NER(Named Entity Recognition)和Pos(Part-of-S

使用自动模型

本文通过文本分类任务演示了HuggingFace自动模型使用方法,既不需要手动计算loss,也不需要手动定义下游任务模型,通过阅读自动模型实现源码,提高NLP建模能力。 一.任务和数据集介绍 1.任务介绍 前面章节通过手动方式定义下游任务模型,HuggingFace也提供了一些常见的预定义下游任务模