怪兽存活概率问题 作者:Grey 原文地址: 博客园:怪兽存活概率问题 CSDN:怪兽存活概率问题 题目描述 给定3个参数,N,M,K 怪兽有 N 滴血,等着英雄来砍自己,英雄每一次打击,都会让怪兽流失, 怪兽每一次流失的血量在区间[0……M]上等概率的获得一个值,求 K 次打击之后,英雄把怪兽砍死
做技术是打怪兽不是养宠物,为什么要打怪兽?因为难;为什么难很重要?因为难的事情才能带来成长;为什么要成长?承认吧,因为「如何成长」是当代人,包括你我他在内焦虑的源泉。
Lasso线性回归(Least Absolute Shrinkage and Selection Operator)是一种能够进行特征选择和正则化的线性回归方法。其重要的思想是L1正则化:其基本原理为在损失函数中加上模型权重系数的绝对值,要想让模型的拟合效果比较好,就要使损失函数尽可能的小,因此这样
K最临近(K-Nearest Neighbors,KNN)方法是一种简单且直观的分类和回归算法,主要用于分类任务。其基本原理是用到表决的方法,找到距离其最近的K个样本,然后通过K个样本的标签进行表决,预测结果给出的标签是表决多的一方。 在使用K最临近方法的时候,有两个方面可调: 一是K值的大小,K一
机器学习方法对多维特征数据进行分类:本文用到非常经典的机器学习方法,使用递归特征消除进行特征选择,使用支持向量机构建分类模型,使用留一交叉验证的方法来评判模型的性能。 构建模型:支持向量机(Support Vector Machine,SVM); 特征选择:递归特征消除(Recursive Feat
本示例介绍在Worker子线程使用@ohos.zlib提供的zlib.decompressfile接口对沙箱目录中的压缩文件进行解压操作,解压成功后将解压路径返回主线程,获取解压文件列表。
# 背景 发现陷入了一个怪圈,写文章的话,感觉只有大bug或比较值得写的内容才会写,每次一写就是几千字,争取写得透彻一些,但这样,我也挺费时间,读者也未必有这么多时间看。 我想着,日常遇到的小bug、平时工作中的一些小的心得体会,都还是可以写写,这样也才是最贴近咱们作为一线开发生活的,也不必非得是个
由于要搭建一个ctf平台,用docker一键搭建是出现超时情况 用了很多办法,换源,等之类的一样没办法,似乎它就是只能用官方那个一样很怪。 只能用一种笨办法来处理了,一个个pull。 打个比如: 打开相对应docker-compose.yml文件 可以看到image就是需要去下载的。那么此时你就可以
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 今天我们来战 过拟合和欠拟合,特别是令江湖侠客闻风丧胆的 过拟合,简称过儿, Emmm 过儿听起来有点怪怪的 1. 楔子 机器学习模型是一种能够从数据中学习规律并进行预测的算法。我们希望
对于资深程序员而言,IDE是必不可少的,它好比是剑客手中的宝剑,IDE帮助程序员更快更丝滑的去编程,同时插件就是这把剑上的各种Buff,为宝剑赋能,提供更好的升级打怪体验。
/proc/sysrq-trigger详解 这是一组“魔术组合键”,只要内核没有被完全锁住,不管内核在做什么事情,使用这些组合键能即时打印出内核的信息。 使用SysRq组合键是了解系统目前运行情况的最佳方式。如果系统出现挂起的情况或在诊断一些和内核相关,比较怪异,比较难重现的问题的时候,使用SysR
0、导读 用mysqldump备份数据时,加上 -w 条件选项过滤部分数据,发现导出结果比实际少了40万,什么情况? 本文约1500字,阅读时间约5分钟。 1、问题 我的朋友小文前几天遇到一个怪事,他用mysqldump备份数据时,加上了 -w 选项过滤部分数据,发现导出的数据比实际上少了40万。