微调 Florence-2 - 微软的尖端视觉语言模型

Florence-2 是微软于 2024 年 6 月发布的一个基础视觉语言模型。该模型极具吸引力,因为它尺寸很小 (0.2B 及 0.7B) 且在各种计算机视觉和视觉语言任务上表现出色。 Florence 开箱即用支持多种类型的任务,包括: 看图说话、目标检测、OCR 等等。虽然覆盖面很广,但仍有可

基于 P-Tuning v2 进行 ChatGLM2-6B 微调实践

微调类型简介 1. SFT监督微调:适用于在源任务中具有较高性能的模型进行微调,学习率较小。常见任务包括中文实体识别、语言模型训练、UIE模型微调。优点是可以快速适应目标任务,但缺点是可能需要较长的训练时间和大量数据。 2. LoRA微调:通过高阶矩阵秩的分解减少微调参数量,不改变预训练模型参数,新

LLM微调方法(Efficient-Tuning)六大主流方法:思路讲解&优缺点对比[P-tuning、Lora、Prefix tuing等]

LLM微调方法(Efficient-Tuning)六大主流方法:思路讲解&优缺点对比[P-tuning、Lora、Prefix tuing等] 由于LLM参数量都是在亿级以上,少则数十亿,多则数千亿。当我们想在用特定领域的数据微调模型时,如果想要full-tuning所有模型参数,看着是不太实际,一

StarCoder2-Instruct: 完全透明和可自我对齐的代码生成

指令微调 是一种技术,它能让大语言模型 (LLMs) 更好地理解和遵循人类的指令。但是,在编程任务中,大多数模型的微调都是基于人类编写的指令 (这需要很高的成本) 或者是由大型专有 LLMs 生成的指令 (可能不允许使用)。 我们推出了一个叫做 StarCoder2-15B-Instruct-v0.

[转帖]指令微调数据集整理

`https://blog.csdn.net/dzysunshine/article/details/130870398` 文章目录 开源指令数据集斯坦福数据链家数据Baize(基于少量种子问题的对话数据) 垂直领域数据集医疗领域的英文数据医疗领域的中文数据法律领域中文数据 COIG数据集(可商用的

煤矿安全大模型:微调internlm2模型实现针对煤矿事故和煤矿安全知识的智能问答

煤矿安全大模型————矿途智护者 使用煤矿历史事故案例,事故处理报告、安全规程规章制度、技术文档、煤矿从业人员入职考试题库等数据,微调internlm2模型实现针对煤矿事故和煤矿安全知识的智能问答。 本项目简介: 近年来,国家对煤矿安全生产的重视程度不断提升。为了确保煤矿作业的安全,提高从业人员的安

大模型高效微调-LoRA原理详解和训练过程深入分析

博客首发于我的知乎,详见:https://zhuanlan.zhihu.com/p/702629428 一、LoRA原理 LoRA(Low-Rank Adaptation of LLMs),即LLMs的低秩适应,是参数高效微调最常用的方法。 LoRA的本质就是用更少的训练参数来近似LLM全参数微调所

LLM实战:LLM微调加速神器-Unsloth + Qwen1.5

本文主要是使用unsloth框架针对Qwen1.5的高效微调实验,提供了详细的对比代码以及不同维度的对比分析结果。

LLM实战:LLM微调加速神器-Unsloth + LLama3

1. 背景 五一结束后,本qiang~又投入了LLM的技术海洋中,本期将给大家带来LLM微调神器:Unsloth。 正如Unsloth官方的对外宣贯:Easily finetune & train LLMs; Get faster with unsloth。微调训练LLM,可以显著提升速度,其次显存

大模型高效微调详解-从Adpter、PrefixTuning到LoRA

一、背景 目前NLP主流范式是在大量通用数据上进行预训练语言模型训练,然后再针对特定下游任务进行微调,达到领域适应(迁移学习)的目的。 指令微调是预训练语言模型微调的主流范式 其目的是尽量让下游任务的形式尽量接近预训练任务,从而减少下游任务和预训练任务之间的Gap, 实现预训练语言模型适应下游任务,

聊聊预训练模型的微调

翻译自:[Fine-tuning a model with the Trainer API](https://huggingface.co/learn/nlp-course/chapter3/3?fw=pt "Fine-tuning a model with the Trainer API") `T

【转帖】Alpaca 7B:斯坦福从LLaMA-7B微调的语言模型

https://www.jianshu.com/p/f8f8f660d2c3 https://crfm.stanford.edu/2023/03/13/alpaca.html https://crfm.stanford.edu/alpaca/ https://github.com/tatsu-lab

解密Prompt系列16. LLM对齐经验之数据越少越好?LTD & LIMA & AlpaGasus

总结下指令微调、对齐样本筛选相关的方案包括LIMA,LTD等。论文都是以优化指令样本为核心,提出对齐阶段的数据质量优于数量,少量+多样+高质量的对齐数据,就能让你快速拥有效果杠杠的模型

Llama2-Chinese项目:3.2-LoRA微调和模型量化

提供LoRA微调和全量参数微调代码,训练数据为data/train_sft.csv,验证数据为data/dev_sft.csv,数据格式为"Human: "+问题+"\nAssistant: "+答案。本文主要介绍Llama-2-7b模型LoRA微调以及4bit量化的实践过程。

Llama2-Chinese项目:3.1-全量参数微调

提供LoRA微调和全量参数微调代码,训练数据为data/train_sft.csv,验证数据为data/dev_sft.csv,数据格式如下所示: "Human: "+问题+"\nAssistant: "+答案 举个例子,如下所示: Human: 用一句话描述地球为什么是独

大模型高效开发的秘密武器:大模型低参微调套件MindSpore PET

摘要:本文介绍大模型低参微调套件——MindSpore PET。 本文分享自华为云社区《大模型高效开发的秘密武器——大模型低参微调套件MindSpore PET篇》,作者:yd_280874276 。 人工智能进入“大模型时代”。大模型具备更强泛化能力,在各垂直领域落地时,只需要进行参数微调,就可以

chatglm2-6b在P40上做LORA微调

目前,大模型的技术应用已经遍地开花。最快的应用方式无非是利用自有垂直领域的数据进行模型微调。chatglm2-6b在国内开源的大模型上,效果比较突出。本文章分享的内容是用chatglm2-6b模型在集团EA的P40机器上进行垂直领域的LORA微调。

聊聊GLM-4-9B开源模型的微调loss计算

概述 Github官方地址:GLM-4 网上已经有很多关于微调的文章,介绍各种方式下的使用,这里不会赘述。我个人比较关心的是微调时的loss计算逻辑,这点在很多的文章都不会有相关的描述,因为大多数人都是关心如何使用之类的应用层,而不是其具体的底层逻辑,当然咱也说不清太底层的计算。 可了解其它loss

用 Sentence Transformers v3 训练和微调嵌入模型

Sentence Transformers 是一个 Python 库,用于使用和训练各种应用的嵌入模型,例如检索增强生成 (RAG)、语义搜索、语义文本相似度、释义挖掘 (paraphrase mining) 等等。其 3.0 版本的更新是该工程自创建以来最大的一次,引入了一种新的训练方法。在这篇博

【转帖】调教LLaMA类模型没那么难,LoRA将模型微调缩减到几小时

https://www.thepaper.cn/newsDetail_forward_23250236 LoRA 微调方法,随着大模型的出现而走红。 最近几个月,ChatGPT 等一系列大语言模型(LLM)相继出现,随之而来的是算力紧缺日益严重。虽然人人都想打造专属于自己的大模型,但是能负担得起上亿