核密度估计(KDE)方法,相当于用多个波包的组合形式来近似一个真实的概率密度,以获得一个连续可微分的概率密度函数。本文通过一些简单的概率分布的示例,演示了一下KDE的使用方法。其实KDE的思想在很多领域都会以不同的形式出现,是一个比较基础的概率分布近似手段。
概念漂移 概念漂移是数据流挖掘领域中一个重要的研究点。传统的机器学习算法在操作时通常假设数据是静态的,其数据分布不会随着时间发生变化。然而对于真实的数据流来说,由于数据流天生的时间性,到达的数据的分布可能会随着时间的推移不断改变。这使得传统的批处理模型不适合对数据流的进行挖掘分析,模型更是需要有
在一维空间下,我们要表示密度时可以给出一个二维的函数y=f(x),画出来是一条二维平面上的曲线。在二维空间下,我们要表示密度可以使用一个三维的函数z=f(x,y),画出来是一个三维空间的曲面。而三维空间下,密度表示是一个四维的函数:q=f(x,y,z),这个密度我们在三维空间已经没有办法用线或者面去...
总结了最小割的四个模型——最大权闭合图,最大密度子图,最小点覆盖集,最大权独立集。带你走进最小割的神秘!
本文的主要内容是一些统计力学中的基础的概率论知识,如密度函数、分布函数和贝叶斯定理的一些基本概念,主要作为一个简单的知识内容记录和分享,后续还有更多的同系列文章。
大家好,我是猫哥,今天给大家分享几个高质量的技术类信息源。 本文分享的信息源都是周刊类型的,所谓周刊类,就是以固定每周的频率更新,每期分享很多精华内容的链接。它的特点是信息密度极高,可以节省你去查找信息的时间,高效的学习者都会喜欢这类内容。 如果不是看了这篇文章,我猜你可能想不到 Python 竟会
https://baijiahao.baidu.com/s?id=1715831828043988994&wfr=spider&for=pc QSFP-DD作为400G光学器件最小尺寸的封装,可提供较高的端口密度,且可向后兼容QSFP+/QSFP28封装,备受供应商热捧。如今,不少供应商纷纷都推出了
一、概述 作为机器学习领域的重要内容之一,聚类模型在许多方面能够发挥举足轻重的作用。所谓聚类,就是通过一定的技术方法将一堆数据样本依照其特性划分为不同的簇类,使得同一个簇内的样本有着更相近的属性。依不同的实现策略,聚类算法有很多种,如基于距离的k-means、基于密度的DBSCAN等。在聚类完成之后
Matplotlib 库是一个用于数据可视化和绘图的 Python 库。它提供了大量的函数和类,可以帮助用户轻松地创建各种类型的图表,包括直方图、箱形图、散点图、饼图、条形图和密度图等。 使用 Matplotlib 的过程中,遇到的难点并不在于绘制各类的图形,因为每种图形都有其对应的API。难点在于
Matplotlib 库是一个用于数据可视化和绘图的 Python 库。 它提供了大量的函数和类,可以帮助用户轻松地创建各种类型的图表,包括直方图、箱形图、散点图、饼图、条形图和密度图等。 本系列具体内容包括: 画布 画布是其他所有的元素的载体,可以说是最重要,也是最容易被忽视的元素。 绘制图形之前