知识图谱实体对齐:无监督和自监督的方法

我们在前面介绍的都是有监督的知识图谱对齐方法,它们都需要需要已经对齐好的实体做为种子(锚点),但是在实际场景下可能并没有那么多种子给我们使用。为了解决这个问题,有许多无监督/自监督的知识图谱对齐方法被提出。其中包括基于GAN的方法,基于对比学习的方法等。他们在不需要事先给定锚点的情况下将来自不同知识图谱实体embeddings映射到一个统一的空间。

知识图谱(Knowledge Graph)根本概念

[TOC] 2012年5月17日,Google 正式提出了知识图谱(Knowledge Graph)的概念,其初衷是为了优化搜索引擎返回的结果,增强用户搜索质量及体验。 假设我们想知道 “王健林的儿子” 是谁,百度或谷歌一下,搜索引擎会准确返回王思聪的信息,说明搜索引擎理解了用户的意图,知道我们要找

知识图谱(Knowledge Graph)- Neo4j 5.10.0 CentOS 安装

[知识图谱(Knowledge Graph)- Neo4j 5.10.0 Docker 安装](https://www.cnblogs.com/vipsoft/p/17623086.html) [知识图谱(Knowledge Graph)- Neo4j 5.10.0 CentOS 安装](https

知识图谱(Knowledge Graph)- Neo4j 5.10.0 Docker 安装

[知识图谱(Knowledge Graph)- Neo4j 5.10.0 Docker 安装](https://www.cnblogs.com/vipsoft/p/17623086.html) [知识图谱(Knowledge Graph)- Neo4j 5.10.0 CentOS 安装](https

知识图谱(Knowledge Graph)- Neo4j 5.10.0 使用 - CQL - 太极拳传承谱系表

目录创建节点删除节点查询节点创建关系新节点无属性关系删除关系案例 -- 太极拳传承谱系表创建传承人创建师徒关系创建第N代传承人案例 -- 批量执行 看到后面的案例再实操作 删除数据库中以往的图 MATCH (n) DETACH DELETE n 创建节点 CREATE命令语法 Neo4j CQL“C

知识图谱(Knowledge Graph)- Neo4j 5.10.0 Desktop & GraphXR

下载地址:https://neo4j.com/download/ ## 安装 ![image](https://img2023.cnblogs.com/blog/80824/202308/80824-20230816104928898-1342667053.png) 下载时会产生激活码(保存下来)

知识图谱(Knowledge Graph)- Neo4j 5.10.0 Desktop & GraphXR 连接自建数据库

``` #输入查看数据库连接 neo4j$ :server status ``` ![image](https://img2023.cnblogs.com/blog/80824/202308/80824-20230816130548712-41133454.png) 添加 远程连接,输入连接地址 !

知识图谱(Knowledge Graph)- Neo4j 5.10.0 使用 - Java SpringBoot 操作 Neo4j

上一篇使用了 CQL 实现了太极拳传承谱,这次使用JAVA SpringBoot 实现,只演示获取信息,源码连接在文章最后 三要素 在知识图谱中,通过三元组 集合的形式来描述事物之间的关系: - 实体:又叫作本体,指客观存在并可相互区别的事物,可以是具体的人、事、物,也可以是抽象的概念或联系,实体是

知识图谱(Knowledge Graph)- Neo4j 5.10.0 使用 - Python 操作

数据基于: [知识图谱(Knowledge Graph)- Neo4j 5.10.0 使用 - CQL - 太极拳传承谱系表](https://www.cnblogs.com/vipsoft/p/17631347.html) 这是一个非常简单的web应用程序,它使用我们的Movie图形数据集来提供列

Vector | Graph:蚂蚁首个开源Graph RAG框架设计解读

引入知识图谱技术后,传统RAG链路到Graph RAG链路会有什么样的变化,如何兼容RAG中的向量数据库(Vector Database)和图数据库(Graph Database)基座,以及蚂蚁的Graph RAG开源技术方案和未来优化方向。

LLM应用实战:当图谱问答(KBQA)集成大模型(三)

本文主要是针对KBQA方案基于LLM实现存在的问题进行优化,主要涉及到响应时间提升优化以及多轮对话效果优化,提供了具体的优化方案以及相应的prompt。

聊聊语言模型与知识图谱

## 语言模型 语言模型泛指:大语言模型LLM、通用模型GLM。 语言模型也是知识库。基于语言模型下的实现,比如ChatGPT,BERT,ChatGLM等等,这类知识库就像是已经人为处理好、编排好、可直接使用的知识库。 ## 知识图谱 知识图谱的定义由Google公司在2012年提出,被界定为用来提

[转帖]s-systemtap工具使用图谱(持续更新)

整体的学习思维导图如下,后续持续更新完善文章目录​​安装​​​​简介​​​​执行流程​​​​执行方式​​​​stap脚本语法​​​​探针语法​​​​API函数​​​​探针举例​​​​变量使用​​​​基本应用​​​​1. 定位函数位置​​​​2. 查看文件能够添加探针的位置​​​​3. 打印函数参数(

[转帖]s-systemtap工具使用图谱(持续更新)

整体的学习思维导图如下,后续持续更新完善文章目录​​安装​​​​简介​​​​执行流程​​​​执行方式​​​​stap脚本语法​​​​探针语法​​​​API函数​​​​探针举例​​​​变量使用​​​​基本应用​​​​1. 定位函数位置​​​​2. 查看文件能够添加探针的位置​​​​3. 打印函数参数(

[转帖]2022年 SRE、DevOps技能图谱

https://zhuanlan.zhihu.com/p/568752990 在过去一段时间,我面试过一些 DevOps 相关从业者,并且曾经收到过一些知乎小伙伴的提问,针对于 DevOps 以及相关从业者而言,我个人认为这块的要求是比较高的,因为它对 相关技能 以及 工作经验都有一定要求,并且在落

《语义增强可编程知识图谱SPG》白皮书

语义増强可编程图谱框架:新一代知识图谱语义框架/引擎、SPG+LLM双驱架构及应用相关进展和应用。《语义增强可编程知识图谱SPG》白皮书 v1.0.pdf: https://url39.ctfile.com/f/2501739-941002398-f8f1f0?p=2096 (访问密码: 2096)

联邦学习:联邦异构知识图谱数据划分

在联邦场景下,C个知识图谱位于不同的客户端上。知识图谱拥的实体集合之间可能会存在重叠,而其关系集合和元组集合之间则不会重叠。我们联系一下现实场景看这是合理的,比如在不同客户端对应不同银行的情况下,由于不同银行都有着自己的业务流程,所以关系集合不重叠。本文我们来看具体在实验环节怎么去划分联邦异构知识图谱数据。

PPT 动态迷幻图谱

迷幻动画的本质拆解 插件: islide + 软件: PowerPoint https://www.islide.cc/ 圆型 画一个正圆,无填充色,边框 2.25磅 左边红色、右边黄色、中间两个透明度 100% 三角型 曲线 动画 持续时间2秒 (PPT“催眠术”——如何设计一个动态的迷幻图谱)[

透视开源生态,OSGraph——GitHub全域数据图谱的智能洞察工具

"透视开源生态,OSGraph——GitHub全域数据图谱的智能洞察工具 OSGraph (Open Source Graph) 是一个开源图谱关系洞察工具,基于GitHub开源数据全域图谱,实现开发者行为、项目社区生态的分析洞察。可以为开发者、项目Owner、开源布道师、社区运营等提供简洁直观的开

妙用OSGraph:发掘GitHub知识图谱上的开源故事

OSGraph (Open Source Graph) 是一个开源图谱关系洞察工具,基于GitHub开源数据全域图谱,实现开发者行为、项目社区生态的分析洞察。可以为开发者、项目Owner、开源布道师、社区运营等提供简洁直观的开源数据视图,帮助你和你的项目制作专属的开源名片、寻求契合的开发伙伴、挖掘深...