相关博客http://blog.chinaunix.net/uid-24954950-id-2956476.html 相关博客http://blog.csdn.net/misiter/article/details/7514428 相关博客http://blog.chinaunix.net/uid-
关于内存管理和分页模式,不同的操作系统和体系结构可能会有略微不同的实现方式。9-9-9-9-12的分页模式是一种常见的分页方案,其中物理地址被分成四级页表:PXE(Page Directory Pointer Table Entry)、PPE(Page Directory Entry)、PDE(Page Table Entry)和PTE(Page Table Entry)。这种分页模式可以支持大量
页表的一些术语 现在Linux内核中支持四级页表的映射,我们先看下内核中关于页表的一些术语: 全局目录项,PGD(Page Global Directory) 上级目录项,PUD(Page Upper Directory) 中间目录项,PMD(Page Middle Directory) 页表项,(
在生活中太阳的东升西落,鸟类的南飞北归,四级的轮换,每天的上下班,海水的潮汐,每月的房租车贷等等,如果用程序员的视角看,这就是一个个的定时任务,在日常的开发工作中也有很多的定时任务场景
Promise时效控单系统作为时效域的控制系统,在用户下单前、下单后等多个节点均提供服务,是用户下单黄金链路上的重要节点;控单系统主要逻辑是针对用户请求从规则库中找出符合条件的最优规则,并将该规则的时效控制结果返回客户端,比如因为临时疫情等原因针对仓、配、商家、客户四级地址等不同维度进行精细粒度的时效控制。
一、域名更换证书 ssl证书一般包括证书文件crt、cer、pem、pfx和私钥文件key。 CER、CRT、PEM 和 PFX 是不同的证书文件格式,它们之间存在一些区别: CER (DER 编码) CER 文件是使用 DER 编码的证书文件格式。 CER 文件通常包含单个 X.509 证书。 C
1、缓存应用 一个系统中不同层面数据访问速度不一样,以计算机为例,CPU、内存和磁盘这三层的访问速度从几十 ns 到 100ns,再到几 ms,性能的差异很大,如果每次 CPU 处理数据时都要到磁盘读取数据,系统运行速度会大大降低。 所以,计算机系统中,默认有两种缓存: (1)CPU 里面的末级缓存
博客地址:https://www.cnblogs.com/zylyehuo/ 概念 四元数是一种用于表示旋转和方向的数学对象,它由一个实部和三个虚部组成。四元数可以用来替代旋转矩阵,在计算机图形学、机器人学、物理学等领域有广泛的应用。 四元数的一般形式为:q = a + bi + cj + dk,其
索引虽然能加速查询,但是会降低写操作的性能,以及耗费更多的磁盘空间。所以建立索引之前需要考虑是不是必要的。
引言 相信巨硬,我们便一直硬。Net版本到现在已经出了7了,8也已经在预览版了,相信在一个半月就会正式发布,其中也有很多拭目以待的新功能了,不仅仅有Apm和Tap的结合,TaskToAscynResult,以及UnsafeAccessor用来获取私有变量,性能比反射,EMIT更高,还有针对Async
引言 在网上很少看到有关于系统讲解EFCore源码的,可能大概也许是因为EFCore的源码总体是没有asp.net web的源码流程清晰,正如群友所说,EFCore的源码大致看起来有点凌乱,与其说凌乱,不如说是没有一个好的方向;然后昨天在群里有一个朋友再说,EfCore的拦截器如何注入Web的服务,
四叉树代码修改完善 原来的代码中,没有使用投影转换,直接使用的是世界坐标(单位是米), CELLQuadTree::CELLQuadTree( CELLTerrainInterface* pInterface ,CELLQuadTree* parent ,const real2 vStart ,co
四、用go语言,重写 ENQUEUE 和 DEQUEUE 的代码,使之能处理队列的下溢和上溢。 文心一言: 在 Go 语言中,我们可以使用切片来实现队列。下面是如何实现 ENQUEUE 和 DEQUEUE 操作,同时处理队列的下溢和上溢的情况: package main import "fmt" t
本文首先讲述四层负载均衡技术的特点,然后通过提问的方式推导出四层负载均衡器的NAT模型和DR模型的工作原理。通过本文可以了解到四层负载均衡的技术特点、NAT模型和DR模型的工作原理、以及NAT模型和DR模型的优缺点。
引言 在上一博客中,我们正式开始了单片机的学习之路,讲了单片机的概念,以及我们使用的ESP32系列的单片机的IO引脚,讲了什么是GPIO,以及相关的总线通讯概念(UART,IIC,SPI),脉冲调制概念(PWM),以及信号数字互转的(ADC和DAC),板子自带的一些功能,在今天的博客中,我会带你们正
引言 在第一章博客中,我们讲了Arduino对Esp32的一个环境配置,以及了解到了常用的一个总线通讯协议,其中有SPI,IIC,UART等,今天我为大家带来UART串口通讯和c#串口进行通讯的一个案例,以及什么是中断,中断的作用和实践,话不多说,让我们正式开始。 UART 在第一篇博客中,我们讲了
引言 各位大佬,晚上好啊,在上一篇博客中,我们讲了什么是UART串口通讯,以及使用USB转TTL使得单片机可以和c#上位机做一个串口通讯,接下来,为大家带来PWM的概念原理,以及实际案例,使用PWM对电机进行速度调制,因为本课程的最后是做一个红外遥控的智能小车,所以是需要电机四个,驱动四个,轮胎四个
引言 net同僚对于async和await的话题真的是经久不衰,这段时间又看到了关于这方面的讨论,最终也没有得出什么结论,其实要弄懂这个东西,并没有那么复杂,简单的从本质上来讲,就是一句话,async 和await异步的本质就是状态机+线程环境上下文的流转,由状态机向前推进执行,上下文进行环境切换,
引言 在我第一次写博客的时候,写的第一篇文章,就是关于表达式树的,链接:https://www.cnblogs.com/1996-Chinese-Chen/p/14987967.html,其中,当时一直没有研究Expression.Dynamic的使用方法(因为网上找不到资料),就了解到是程序运行时
引言 本文篇幅较长,且不涉及任何技术方面的代码,亦可能涉及一些浅层的哲学方面的,如不喜,求放过。 经常看到在各个程序员论坛上,总是以术成文,鲜有以道成术,而诸多同僚大多数都追求于术,却略于道,而经验之谈,却是重于术数之用,故,今日开篇总结我的程序员之路,六年下来总结的属于自己的方法论分享给大家,希望