本文深入探讨了向量数据库的基础概念、架构设计及实现技术,详细介绍了HNSW、FAISS和Milvus等关键算法和工具,旨在为高效管理和检索高维向量数据提供全面的技术指南。 关注TechLead,复旦博士,分享云服务领域全维度开发技术。拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,复旦机
xsimd简介 xsimd是C++的一个开源simd库,实现了对常见simd指令的封装,从而使得simd的操作更为简单。接下来先从两个简单的例子来入门xsimd。 void average(const std::vector& v1, const std::vector
本文连接:https://wanger-sjtu.github.io/CARGA/ CAGRA 是 N社在RAFT项目中 最新的 ANN 向量索引。这是一种高性能的、 GPU 加速的、基于图的方法,尤其是针对小批量情况进行了优化,其中每次查找只包含一个或几个查询向量。 与其他像HNSW、SONG等这
摘要:详细讲解DeepWalk,通过随机游走的方式对网络化数据做一个表示学习,它是图神经网络的开山之作,借鉴了Word2vec的思想。 本文分享自华为云社区《[论文阅读] (25) 向量表征经典之DeepWalk:从Word2vec到DeepWalk,再到Asm2vec和Log2vec》,作者:ea
三维向量和三角函数 三维向量 向量是指一个同时具有大小和方向,且满足平行四边形法则的几何对象。 向量的模 po点相对于世界坐标原点的距离: po.magnitude。 标准向量,归一向量,指的是将向量的模变成1,方向不变。改变后的向量: po.normalized。 向量的方向 求向量的方向(求向量
文本转换为向量有多种方式: 方法一:通过模型服务灵积DashScope将文本转换为向量(推荐) 方法二:通过ModelScope魔搭社区中的文本向量开源模型将文本转换为向量 方法三:通过Jina Embeddings v2模型将文本转换为向量 方法四:通过百川智能向量化模型将文本转换为向量 本文
摘要自《深入浅出Embedding》一问。具体详细内容请移步该书。 ## 概述 简单来说,嵌入是用向量表示一个物体,这个物体可以是一个单词、一条语句、一个序列、一件商品、一个动作、一本书、一部电影等,可以说嵌入(Embedding)涉及机器学习、深度学习的绝大部分对象。这些对象是机器学习和深度学习中
作者:朱一帆 目录 SIMD 介绍 SIMD 函数派发方案 面向编译器的优化 SIMD 介绍 SIMD 是重要的重要的程序加速手段。CMU DB 组在 Advanced Database Systems 中有专门的两个章节(vectorization-1, vectorization-2)介绍
Vector容器是C++ STL中的一个动态数组容器,可以在运行时动态地增加或减少其大小,存储相同数据类型的元素,提供了快速的随机访问和在末尾插入或删除元素的功能。该容器可以方便、灵活地代替数组,容器可以实现动态对数组扩容删除等各种复杂操作,其时间复杂度`O(l)常数阶`,其他元素的插入和删除为`O(n)线性阶`,其中n为容器的元素个数,vector具有自动的内存管理机制,对于元素的插入和删除可动
张量(Tensor)、标量(scalar)、向量(vector)、矩阵(matrix) Python Numpy 切片和索引(高级索引、布尔索引、花式索引) Python NumPy 广播(Broadcast) 张量(Tensor):Tensor = multi-dimensional array
基础 [自然语言处理(NLP)](https://www.cnblogs.com/vipsoft/p/17450994.html) [自然语言处理PaddleNLP-词向量应用展示](https://www.cnblogs.com/vipsoft/p/17451860.html) [自然语言处理(N
# 计算几何 ## 向量 > 高一知识,略讲。 #### 向量外积 若 $\vec x = (x_1, y_1), \vec y = (x_2, y_2)$,则有 $\vec x \times \vec y = x_1 y_2 - y_1 x_2$。 或者表示为 $|\vec x||\vec y|
摘要:DSSM 用字向量作为输入既可以减少切词的依赖,又可以提高模型的泛化能力,因为每个汉字所能表达的语义是可以复用的。 本文分享自华为云社区《深度学习应用篇-推荐系统[12]:经典模型-DeepFM模型、DSSM模型召回排序策略以及和其他模型对比》,作者:汀丶。 1.DeepFM模型 1.1模型简
我们知道Bert 预训练模型针对分词、ner、文本分类等下游任务取得了很好的效果,但在语义相似度任务上,表现相较于 Word2Vec、Glove 等并没有明显的提升。
随着 .NET 版本的演进,从 .NET Standard 2.0 版本开始,支持 Vector 类型。 从 .NET 8.0 版本开始,大量在 Runtime 提供的各个组件中运用向量计算,特别是 Linq。 Vector 类型:表示指定数值类型(适用于并行算法的低级别优化)的单个向量。
本教程演示如何使用向量检索服务(DashVector),结合LLM大模型等能力,来打造基于垂直领域专属知识等问答服务。其中LLM大模型能力,以及文本向量生成等能力,这里基于灵积模型服务上的通义千问 API以及Embedding API来接入。 背景及实现思路 大语言模型(LLM)作为自然语言处理领域
近期,上海合合信息科技股份有限公司发布的文本向量化模型 acge_text_embedding 在中文文本向量化领域取得了重大突破,荣获 Massive Text Embedding Benchmark (MTEB) 中文榜单(C-MTEB)第一名的成绩。这一成就标志着该模型将在大模型领域的应用中发
### 数字 $x$ 标量 $X$ 向量 $\Chi$ 矩阵 ![image](https://img2023.cnblogs.com/blog/80824/202305/80824-20230511150354001-583871474.png) ![image](https://img2023.
## 国内文章 ### C#使用词嵌入向量与向量数据库为大语言模型(LLM)赋能长期记忆实现私域问答机器人落地之openai接口平替 https://www.cnblogs.com/gmmy/p/17430613.html 在上一篇[文章](https://www.cnblogs.com/gmmy/
Transformer注意力架构原理 输入层 embedding词嵌入向量 将文本中词汇的数字表示转变为向量表示,在这样的高维空间捕捉词汇间的关系 语义相近的词语对应的向量位置也更相近 每个词先通过词典转换成tokenId,在把tokenId转化为一个512纬的向量 位置编码 将每个词的位置向量(通