卷积神经网络-AlexNet

AlexNet 一些前置知识 top-1 和top-5错误率 top-1错误率指的是在最后的n哥预测结果中,只有预测概率最大对应的类别是正确答案才算预测正确。 top-5错误率指的是在最后的n个预测结果中,只要预测概率最大的前五个中含有正确答案就算预测正确。 max-pooling层 最大池化又叫做

卷积导向快速傅里叶变换(FFT/NTT)教程

1 Forewords 卷积,但不止卷积 - FFT 漫谈 先有 FT,再有 DFT,才有 FFT 时频转换是最初的用途 发现单位根优秀性质,James Cooley, John Tukey 发明现代 FFT 加速 DFT,但此前相似的发现早已有之 后来将 DFT 与卷积定理联系,FFT 才被用于计

头疼!卷积神经网络是什么?CNN结构、训练与优化一文全解

> 本文全面探讨了卷积神经网络CNN,深入分析了背景和重要性、定义与层次介绍、训练与优化,详细分析了其卷积层、激活函数、池化层、归一化层,最后列出其训练与优化的多项关键技术:训练集准备与增强、损失函数、优化器、学习率调整、正则化技巧与模型评估调优。旨在为人工智能学者使用卷积神经网络CNN提供全面的指

总结了6种卷积神经网络压缩方法

摘要:神经网络的压缩算法是,旨在将一个庞大而复杂的预训练模型(pre-trained model)转化为一个精简的小模型。 本文分享自华为云社区《卷积神经网络压缩方法总结》,作者:嵌入式视觉 。 我们知道,在一定程度上,网络越深,参数越多,模型越复杂,其最终效果越好。神经网络的压缩算法是,旨在将一个

CoordConv:给你的卷积加上坐标

摘要:本文主要对CoordConv的理论进行了介绍,对其进行了复现,并展示了其在网络结构中的用法。 本文分享自华为云社区《CoordConv:给你的卷积加上坐标》,作者: 李长安。 一、理论介绍 1.1 CoordConv理论详解 这是一篇考古的论文复现项目,在2018年作者提出这个CoordCon

使用卷积神经网络实现图片去摩尔纹

摘要:本项目主要介绍了如何使用卷积神经网络去检测翻拍图片,主要为摩尔纹图片;其主要创新点在于网络结构上,将图片的高低频信息分开处理。 本文分享自华为云社区《图片去摩尔纹简述与代码实现》,作者: 李长安。 1前言 当感光元件像素的空间频率与影像中条纹的空间频率接近时,可能产生一种新的波浪形的干扰图案,

基于卷积神经网络的MAE自监督方法

本文介绍ICLR2023的方法Spark,实现了基于CNN的MAE。

基于深度卷积神经网络的时间序列图像分类,开源、低功耗、低成本的人工智能硬件提供者

具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI人工智能 卷积神经网络(CNN)通过从原始数据中自动学习层次特征表示,在图像识别任务中取得了巨大成功。虽然大多数时间序列分类(TSC)文献都集中在1D信号上,但本文使用递归图(RP)将时间序列转换为2D纹理

使用Python的一维卷积

学习&转载文章:使用Python的一维卷积 背景 在开发机器学习算法时,最重要的事情之一(如果不是最重要的话)是提取最相关的特征,这是在项目的特征工程部分中完成的。 在CNNs中,此过程由网络自动完成。特别是在早期层中,网络试图提取图像的最重要的特征,例如边缘和形状。 另一方面,在最后一层中,它将能

深度学习(八)——神经网络:卷积层

主要介绍神经网络中的卷积层操作,包括构建卷积层、处理图像、可视化

消除视觉Transformer与卷积神经网络在小数据集上的差距

摘要:本文通过多种操作构建混合模型,增强视觉Transformer捕捉空间相关性的能力和其进行通道多样性表征的能力,弥补了Transformer在小数据集上从头训练的精度与传统的卷积神经网络之间的差距。 本文分享自华为云社区《[NeurIPS 2022] 消除视觉Transformer与卷积神经网络

深度学习(七)——神经网络的卷积操作

关于torch.nn.functional操作的深入理解,主要介绍卷积计算过程。

算法学习笔记(24): 狄利克雷卷积和莫比乌斯反演

# 狄利克雷卷积和莫比乌斯反演 > 看了《组合数学》,再听了学长讲的……感觉三官被颠覆…… [TOC] ## 狄利克雷卷积 如此定义: $$ (f*g)(n) = \sum_{xy = n} f(x)g(y) $$ 或者可以写为 $$ (f * g)(n) = \sum_{d | n} f(d) g

何为神经网络卷积层?

摘要:本文深度讲解了卷积计算的原理,并详细介绍了构成所有卷积网络主干的基本元素,包括卷积层本身、填充和步幅的基本细节、用于在相邻区域汇聚信息的汇聚层,最后给出卷积层和汇聚层的代码示例和CNN框架结构图。 本文分享自华为云社区《神经网络基础部件-卷积层详解》,作者: 嵌入式视觉 。 前言 在全连接层构

聊聊池化层和步长为2的卷积层

摘要:对于池化层和步长为2的卷积层来说,个人的理解是这样的,池化层是一种先验的下采样方式,即人为的确定好下采样的规则;而对于步长为2的卷积层来说,其参数是通过学习得到的,采样的规则是不确定的。 本文分享自华为云社区《对于池化层和步长为2的卷积层的一些思考》,作者: 李长安。 引言 对于池化层和步长为

OctConv:八度卷积复现

摘要:不同于传统的卷积,八度卷积主要针对图像的高频信号与低频信号。 本文分享自华为云社区《OctConv:八度卷积复现》,作者:李长安 。 论文解读 八度卷积于2019年在论文《Drop an Octave: Reducing Spatial Redundancy in Convolutional

基于改进MFCC特征和卷积递归神经网络的心音分类

具体的软硬件实现点击http://mcu-ai.com/MCU-AI技术网页_MCU-AI人工智能 心音分类在心血管疾病的早期发现中起着至关重要的作用,特别是对于小型初级卫生保健诊所。尽管近年来心音分类取得了很大进展,但其中大多数都是基于传统的分段特征和基于浅层结构的分类器。这些传统的声学表示和分类

PeLK:101 x 101 的超大卷积网络,同参数量下反超 ViT | CVPR 2024

最近,有一些大型内核卷积网络的研究,但考虑到卷积的平方复杂度,扩大内核会带来大量的参数,继而引发严重的优化问题。受人类视觉的启发,论文提出了外围卷积,通过参数共享将卷积的复杂性从 \(O(K^{2})\) 降低到 \(O(\mathrm{log} K)\),有效减少 90% 以上的参数数量并设法将内

算法金 | 读者问了个关于深度学习卷积神经网络(CNN)核心概念的问题

​大侠幸会,在下全网同名[算法金] 0 基础转 AI 上岸,多个算法赛 Top [日更万日,让更多人享受智能乐趣] 读者问了个关于卷积神经网络核心概念的问题,如下, 【问】神经元、权重、激活函数、参数、图片尺寸,卷积层、卷积核,特征图,平均池化,全家平均池化,全连接层、隐藏层,输出层 【完整问题】神

构造照亮世界——快速沃尔什变换 (FWT)

博客园 我的博客 快速沃尔什变换解决的卷积问题 快速沃尔什变换(FWT)是解决这样一类卷积问题: \[c_i=\sum_{i=j\odot k}a_jb_k \]其中,\(\odot\) 是位运算的一种。举个例子,给定数列 \(a,b\),求: \[c_i=\sum_{j\oplus k=i} a_