[转帖]Oracle、MySQL、PG是如何处理数据库“半页写”的问题的?

数据库“断页”是个很有意思的话题,目前任何数据库应该都绕不过去。我们知道数据库的块大小一般是8k、16k、32k,而操作系统块大小是4k,那么在数据库刷内存中的数据页到磁盘上的时候,就有可能中途遭遇类似操作系统异常断电而导致数据页部分写的情况,进而造成数据块损坏,数据块损坏对于某些数据库是致命的,可

半夜被慢查询告警吵醒,limit深度分页的坑

分享是最有效的学习方式。 博客:https://blog.ktdaddy.com/ 故事 梅雨季,闷热的夜,令人窒息,窗外一道道闪电划破漆黑的夜幕,小猫塞着耳机听着恐怖小说,辗转反侧,终于睡意来了,然而挨千刀的手机早不振晚不振,偏偏这个时候振动了一下,一个激灵,没有按捺住对内容的好奇,点开了短信,卧

程序员转型正当时, 35+开启第二职业

半年前,我亲历失业挑战,写了博客文章《35岁失业程序员现身说法》记录当时心境。过去的大半年,我思考最多的还是关于中年和怎么开启第二职业,抽空把主要感想记录下来。 35+对我意味着什么 我今年36岁, 工作了16年,35岁前后更换了两次工作,对我来讲体会最深的是: 薪酬与职位的双重挑战:随着年龄增长,

[转帖]全连接队列和半连接队列

半连接队列 syn-cookie打开的情况下 服务器接收到第一次握手的消息后,不会立刻将相关信息放进半连接队列,而是根据对面发过来的报文计算自己的SYN初始序列号。 利用下面几个部分: 客户端IP、客户端端口号、服务端IP、服务端端口号,这4个部分计算一个哈希值一个缓慢增长的时间戳t客户端发来的SY

[转帖]这批半导体项目,赔了夫人又折兵

https://m.thepaper.cn/baijiahao_13062359 中国工业科技新闻的权威观察家 文 科工力量专栏作者 铁流 提供对中国高新技术企业和产品的专业点评 日前,业内传闻“济南泉芯”已经烂尾。近年来,国内出现了德淮半导体、武汉弘芯、贵州华芯通等一批关门或烂尾的半导体项目,堪称

半同态计算芯片

半同态计算芯片 学习该文章:华控清交推出业界首款半同态计算芯片 赋能隐匿查询实用化 摘要 隐匿查询是指在不向数据提供方暴露查询方的查询意图,同时又能在保护数据提供方数据库中其他数据的情况下让查询方获得相关查询结果。实际使用的场景大多是跨广域网环境下基于关键字的查询。当前的常用方法要么需要传输大量的数

AI时代你一定要知道的Agent概念

这两年,随着人工智能(AI)和计算能力的发展,AI应用的落地速度大大加快。以ChatGPT为代表的AI应用迅速火遍全球,成为打工人的常用工具。紧接着,多模态、AI Agent等各种高大尚的名词也逐渐进入大众视野,吸引了大量关注。那么,到底什么是AI Agent?下文半支烟将带你详细了解这个概念。 1

拆解LangChain的大模型记忆方案

之前我们聊过如何使用LangChain给LLM(大模型)装上记忆,里面提到对话链ConversationChain和MessagesPlaceholder,可以简化安装记忆的流程。下文来拆解基于LangChain的大模型记忆方案。

你要的AI Agent工具都在这里

只有让LLM(大模型)学会使用工具,才能做出一系列实用的AI Agent,才能发挥出LLM真正的实力。本篇,我们让AI Agent使用更多的工具,比如:外部搜索、分析CSV、文生图、执行代码等。

LangChain和Hub的前世今生

作为LLM(大模型)开发框架的宠儿,LangChain在短短几年内迅速崛起,成为开发者们不可或缺的工具。本文将带你探讨LangChain和LangChainHub的发展历程。

LangChain转换链:让数据处理更精准

在开发AI Agent(智能体)时,我们经常需要对输入数据进行预处理,这样可以更好地利用LLM。LangChain提供了一个强大的工具——转换链(TransformChain),它可以帮我们轻松实现这一任务。

5分钟了解LangChain的路由链

路由链(RouterChain)是由LLM根据输入的Prompt去选择具体的某个链。路由链中一般会存在多个Prompt,Prompt结合LLM决定下一步选择哪个链。

LangChain结合LLM做私有化文档搜索

我们知道LLM(大语言模型)的底模是基于已经过期的公开数据训练出来的,对于新的知识或者私有化的数据LLM一般无法作答,此时LLM会出现“幻觉”。针对“幻觉”问题,一般的解决方案是采用RAG做检索增强。

5分钟理透LangChain的Chain

LangChain几乎是LLM应用开发的第一选择,它的野心也比较大,它致力于将自己打造成LLM应用开发的最大社区。而LangChain最核心的部分非 Chain 莫属。

坚持与确定性:毒药还是良药?

前段时间跟几个大龄程序员一起吃饭,聊了大家的现状,后来写了篇博客总结了一下《从大龄程序员现状聊聊出路》,本想着给朋友们提供些观点和思路,结果被有些网友批评了。 1. 我的认知达不到赚快钱 有的网友认为我在瞎扯,有的觉得我在灌鸡汤,还有的认为我在指错路。 文中虽然总结了一些自认为有价值的观点,本想着让

LangChain让LLM带上记忆

最近两年,我们见识了“百模大战”,领略到了大型语言模型(LLM)的风采,但它们也存在一个显著的缺陷:没有记忆。在对话中,无法记住上下文的 LLM 常常会让用户感到困扰。本文探讨如何利用 LangChain,快速为 LLM 添加记忆能力,提升对话体验。

基于ReAct机制的AI Agent

当前,在各个大厂纷纷卷LLM的情况下,各自都借助自己的LLM推出了自己的AI Agent,比如字节的Coze,百度的千帆等,还有开源的Dify。你是否想知道其中的原理?是否想过自己如何实现一套AI Agent?当然,借助LangChain就可以。

从大龄程序员现状聊聊出路

朋友们好,我是程序员半支烟。最近和一些IT行业的朋友聊了聊他们的近况,感触颇多。借此机会写篇文章总结一下,希望能给你一些启发。

5分钟明白LangChain 的输出解析器和链

本文介绍 LangChain 的输出解析器OutputParser的使用,和基于LangChain的LCEL构建链。 1. 输出解析器OutputParser 1.1、为什么需要OutputParser 常规的使用LangChain构建LLM应用的流程是:Prompt 输入、调用LLM 、LLM输出

[转帖]TCP半连接队列和全连接队列

TCP半连接队列和全连接队列 文章很长,建议收藏起来慢慢读! 总目录 博客园版 为您奉上珍贵的学习资源 : 免费赠送 :《尼恩Java面试宝典》持续更新+ 史上最全 + 面试必备 2000页+ 面试必备 + 大厂必备 +涨薪必备免费赠送 经典图书:《Java高并发核心编程(卷1)》 面试必备 + 大