一文详解分布式 ID

分布式系统中,我们经常需要对数据、消息等进行唯一标识,这个唯一标识就是分布式 ID,那么我们如何设计它呢?本文将详细讲述分布式 ID 及其生成方案。

谈谈分布式事务原理

分布式系统中,不同服务之间的交互可能会出现各种问题,如网络、异常等,可能会导致服务间的数据产生不一致的情况,如何避免?本文将详细讲述分布式事务的原理和解决方案。

分布式系统的主键生成方案对比

UUID(通用唯一识别码)是由32个十六进制数组成的无序字符串,通过一定的算法计算出来。为了保证其唯一性,UUID规范定义了包括网卡MAC地址、时间戳、名字空间(Namespace)、随机或伪随机数、时序等元素,以及从这些元素生成UUID的算法。一般来说,算法可以保证任何地方产生的任意一个UUID都不会相同,但这个唯一性是有限的,只在特定的范围内才能得到保证。

分布式系统中的数据复制

本文翻译自国外论坛 medium,原文地址: # 什么是数据复制? 数据复制是指将数据复制到一个或多个数据容器以确保可用性的过程。复制的数据通常存储在不同的数据库实例中,即使一个实例发生故障,我们也可以从其他实例获取数据。 一种流行数据复制的实现架构是主从架构。 > 推荐博主开源的 H5 商城项目*

分布式系统常见理论讲解

分布式系统是指由多个节点通过网络进行通信和协作的系统,它具有高可用性、高扩展性、高性能等优点,但也面临着一些挑战,如数据一致性、容错性、负载均衡等。为了解决这些问题,分布式系统设计出现了一些经典的理论和方法,如 CAP 理论、BASE 理论、一致性等。 # CAP 理论 CAP 理论是指一个分布式系

[转帖]Paxos分布式系统共识算法?我愿称其为点歌算法…

http://blog.itpub.net/70024922/viewspace-2927330/ 分布式系统共识算法Paxos相信大家都不陌生,它被称为最难理解的算法不是没有道理的,首先,它的发表之路就充满了坎坷。 1990年,莱斯利·兰伯特大佬写了一篇论文,举了一个城邦选举的例子来介绍Paxos

拜占庭将军问题和 Raft 共识算法讲解

在分布式系统中, 什么是拜占庭将军问题?产生的场景和解决方案是什么?什么是 Raft 共识算法?Raft 算法是如何解决拜占庭将军问题的?其核心原理和算法逻辑是什么?除了 Raft,还有哪些共识算法?共识问题作为分布式系统的一大难点和痛点,本文主要介绍了其产生的背景、原因,以及通用的 Raft 算法解决方案。

在学习分布式系统时遇到的五个常见误解

哈喽大家好,我是咸鱼 我们知道,随着企业规模或者说业务规模的不断扩大,为了应对不断增长的业务需求和提高系统的可伸缩性、可靠性和性能,计算机系统由一开始的单体系统逐渐发展成分布式系统 那么今天咸鱼给大家介绍一些关于小白在学习分布式系统遇到的一些常见误解 ## 误解1.网络是可靠的 **在分布式系统中,

[转帖]Dapper,大规模分布式系统的跟踪系统

http://bigbully.github.io/Dapper-translation/ 作者:Benjamin H. Sigelman, Luiz Andr´e Barroso, Mike Burrows, Pat Stephenson, Manoj Plakal, Donald Beaver,

Elasticsearch 之 join 关联查询及使用场景

在Elasticsearch这样的分布式系统中执行类似SQL的join连接是代价是比较大的,然而,Elasticsearch却给我们提供了基于水平扩展的两种连接形式

载均衡技术全解析:Pulsar 分布式系统的最佳实践

背景 Pulsar 有提供一个查询 Broker 负载的接口: /** * Get load for this broker. * * @return * @throws PulsarAdminException */ LoadManagerReport getLoadReport() throws

[转帖]缓存与存储的一致性策略:从 CPU 到分布式系统

https://zhuanlan.zhihu.com/p/151745863 在计算机系统设计实践中,我们常常会遇到下图所示架构: 为了解决单个存储器读吞吐无法满足要求的问题,常常需要在存储器上面增加一个或多个缓存。但由于相同的数据被复制到一个或多个地方,就容易引发数据一致性问题。不一致的数据可能出

分布式事务的几种实现方式

## 基础理论 ### CAP理论 一致性(Consistency) :在分布式系统中所有的数据备份,在同一时刻都保持一致状态,如无法保证状态一致,直接返回错误; 可用性(Availability):在集群中一部分节点故障,也能保证客户端访问系统并得到正确响应,允许一定时间内数据状态不一致; 分区容

【实践篇】教你玩转JWT认证---从一个优惠券聊起

关于JWT,可以说是分布式系统下的一个利器,我在我的很多项目实践中,认证系统的第一选择都是JWT。它的优势会让你欲罢不能,就像你领优惠券一样。

深入分布式一致性:Raft 和 etcdRaft

分布式一致性是构建可靠的分布式系统的关键要素之一。为了确保数据的一致性和可用性,一致性算法的设计变得至关重要。在这篇博文中,我们将深入探讨两个与分布式一致性密切相关的主题:Raft 算法和 etcdRaft 存储系统。 ## Raft 算法:分布式一致性的基石 Raft 算法是一种分布式一致性算法,

Rendezvous hashing算法介绍

## Rendezvous hashing Rendezvous hashing用于解决分布式系统中的分布式哈希问题,该问题包括三部分: 1. **Keys**:数据或负载的唯一标识 2. **Values**:消耗资源的数据或负载 3. **Servers**:管理数据或负载的实体 例如,在一个分

3大主流分布式事务框架详解(图文总结)

1 简要介绍 随着微服务架构的不断发展,分布式系统逐渐普及到后端领域的每一个角落。 在分布式系统中,跨多个服务的数据一致性一直是一个重大挑战,为解决这一挑战,分布式事务应运而生。 作者在之前的文章《五种分布式事务解决方案》和《4大主流分布式算法介绍》中,详细介绍了分布式事物的解决方案以及实现原理。接

低代码与消息队列的完美融合:打造高效开发与通信的组合

引言 消息队列(Message Queue,MQ)是一种在分布式系统中实现应用程序间通信的中间件技术。它的核心作用在于通过异步处理的方式,使得发送消息的应用程序(生产者)与接收消息的应用程序(消费者)解耦,从而提升系统的伸缩性、可靠性以及性能。 在消息队列中,生产者将需要处理的任务封装成消息发送至消

Dapr 与 .NET Aspire 结合使用获得无与伦比的本地开发体验

Dapr 提供了一组构建块,用于抽象分布式系统中常用的概念。这包括服务、缓存、工作流、复原能力、机密管理等之间的安全同步和异步通信。不必自己实现这些功能,可以消除样板,降低复杂性,并允许您专注于开发业务功能。在您的时间有限并且您只想进行实验的情况下,在Dapr初始设置上花费大量时间可能会令人沮丧。更

从kafka与Flink的事务原理来看二阶段提交与事务日志的结合使用

两阶段提交的成立要基于以下假设: - 该分布式系统中,存在一个节点作为协调者,其他节点作为参与者,且节点之间可以进行网络通信。 - 所有节点都采用预写式日志,且日志被写入后即被保存在可靠的存储设备上,即使节点损坏也不会导致日志数据的丢失。 - 所有节点不会永久性损坏,即使损坏后也可以恢复。 ###