10分钟掌握Python缓存

全文速览 python的不同缓存组件的使用场景和使用样例 cachetools的使用 项目背景 代码检查项目,需要存储每一步检查的中间结果,最终把结果汇总并写入文件中 在中间结果的存储中 可以使用context进行上下文的传递,但是整体对代码改动比较大,违背了开闭原则 也可以利用缓存存储,处理完成之

区域卫生信息平台交互标准 值域编码

国家标准全文公开系统 卫生健康信息标准 国家标准 至 国家标准全文公开系统 查询下载 GB/T 2261.1 个人基本信息分类和代码 第1部分:人的性别代码 GB/T 2261.2 个人基本信息分类和代码 第2部分: 婚姻状况代码 GB/T 2261.3 个人基本信息分类和代码 第3部分: 健康状况

ElasticSearch 实现分词全文检索 - 概述

ES 是一个使用Java语言并且基于Lucene编写的搜索引擎框架,他提供了分布式的全文搜索功能,提供了一个统一的基于Restful风格的WEB接口,官方客户端也对多种语言都提供了相应的API。

ElasticSearch 实现分词全文检索 - SpringBoot 完整实现 Demo 附源码【完结篇】

搜素关键字自动补全(suggest),分词全文搜索 系统初始化,ElasticSearch ES 创建索引(EsIndexTest.createIndexTest) 模拟后台管理员,在添加文章时,将要检查的字段内容,同步到ES中(EsIndexTest.addArticleTest) 模拟用户搜索,在搜索框中查关键词“人工”(EsIndexTest.earchTest)

ElasticSearch 实现分词全文检索 - ES、Kibana、IK分词器安装

先把zip下载下来。放到任意一台服务器(直接github上下载多数会失败)elasticsearch-plugin install http://172.16.0.183:8899/Java/elasticsearch-analysis-ik-7.9.3.zip

ElasticSearch 实现分词全文检索 - Restful基本操作

GET 请求: ``` http://ip:port/index: 查询索引信息 http://ip;port/index/type/doc_id: 查询指定的文档信息 ``` POST 请求: ``` http://ip;port/index/type/_search: 查询文档,可以在请求体中添加json字符串来代表查询条件 http://ip;port/index/type/doc_id/

ElasticSearch 实现分词全文检索 - Java SpringBoot ES 索引操作

//1. 准备索引的 settings Settings.Builder settings = Settings.builder() //2. 准备索引的结构 Mappings XContentBuilder mappings = JsonXContent.contentBuilder() //3. 将 Settings 和 Mappings 封装到一个Request 对象中

ElasticSearch 实现分词全文检索 - Java SpringBoot ES 文档操作

//准备一个Request对象 IndexRequest request = new IndexRequest(indexName); request.id(person.getId().toString()); //手动指定ID request.source(personJson, XContentType.JSON); //通过 Client 对象执行

ElasticSearch 实现分词全文检索 - 测试数据准备

String json = JSON.toJSONStringWithDateFormat(sms, "yyyy-MM-dd HH:mm:ss"); FastJson 将日期格式化 BulkRequest bulkRequest = new BulkRequest(); Integer idx = 1; for (String json : jsonList) {

ElasticSearch 实现分词全文检索 - term、terms查询

term 查询 term的查询是代表完全匹配,搜索之前不会对你搜索的关键字进行分词,对你的关键字去文档分词库中的去匹配内容 terms和term的查询机制是一样,都不会将指定的查询关键字进行分词,直接去分词库中匹配,找到相应文档内容。 terms是在针对一个字段包含多个值的时候使用。 term: where province = 江苏 terms: where province = 江苏 or p

ElasticSearch 实现分词全文检索 - match、match_all、multimatch查询

match查询属于高层查询,他会根据你查询的字段类型不一样,采用不同的查询方式。 - 查询的是日期或者是数值的话,他会将你基于的字符串查询内容转换为日期或者数值对待。 - 如果查询的内容是一个不能被分词的内容 (keyword) ,match查询不会对你指定的查询关键字进行分词。 - 如果查询的内容时一个可以被分词的内容 (text),match会将你指定的查询内容根据一定的方式去分词,去分词库中

ElasticSearch 实现分词全文检索 - id、ids、prefix、fuzzy、wildcard、range、regexp 查询

fuzzy查询:模糊查询,我们输入字符的大概,ES就可以 wildcard 查询:通配查询,和MySQL中的 like 差不多,可以在查询时,在字符串中指定通配符 * 和占位符? range 查询:范围查询,只针对数值类型,对某一个Field进行大于或小于的范围指定查询 regexp 查询: 正则查询,通过你编写的正则表达式去匹配内容

ElasticSearch 实现分词全文检索 - Scroll 深分页

ES 对 from + size 有限制,两者之和不能超过1W Scroll查询方式,不适合做实时的查询,每次都是从数据文档中的ID去获取,效果高了,但文档中的ID(第二步)不是实时更新的,一般后台管理的方式用 Scroll 比较方便

ElasticSearch 实现分词全文检索 - delete-by-query

delete-by-query 根据 term、match 等查询方式去删除大量的文档 > 如果需要删除的内容,是index下的大部分数据,不建议使用,因为去匹配文档时还是一个一个的拿到文档ID,去删除 推荐创建一个全新的index,将保留的文档内容,添加到全新的索引中

ElasticSearch 实现分词全文检索 - 复合查询

boosting 查询可以帮助我们去影响查询后的 score - positive:只有匹配上positive的查询的内容,才会被放到返回的结果中 - negative:如果匹配上和positive并且也匹配上了negative,就可以降低这样的文档 score. - negative_boost:指定系数,必须小于 1.0 关于查询时,分数是如何计算的: - 搜索的关键字在文档中出现的频次越高,

ElasticSearch 实现分词全文检索 - filter查询

query,根据查询条件,去计算文档的匹配度得到一个分数,并且根据分数进行排序,不会做缓存。【精准匹配度高】 filter,根据查询条件去查询文档,不去计算分数,而且filter会对经常被过滤的数据进行缓存。【查询效率会高】

ElasticSearch 实现分词全文检索 - 高亮查询

目录 ElasticSearch 实现分词全文检索 - 概述 ElasticSearch 实现分词全文检索 - ES、Kibana、IK安装 ElasticSearch 实现分词全文检索 - Restful基本操作 ElasticSearch 实现分词全文检索 - Java SpringBoot E

ElasticSearch 实现分词全文检索 - 聚合查询 cardinality

目录 ElasticSearch 实现分词全文检索 - 概述 ElasticSearch 实现分词全文检索 - ES、Kibana、IK安装 ElasticSearch 实现分词全文检索 - Restful基本操作 ElasticSearch 实现分词全文检索 - Java SpringBoot E

ElasticSearch 实现分词全文检索 - 经纬度定位商家距离查询

目录 ElasticSearch 实现分词全文检索 - 概述 ElasticSearch 实现分词全文检索 - ES、Kibana、IK安装 ElasticSearch 实现分词全文检索 - Restful基本操作 ElasticSearch 实现分词全文检索 - Java SpringBoot E

ElasticSearch 实现分词全文检索 - 搜素关键字自动补全(Completion Suggest)

ES使用Completion Suggest 做关键字自动补全时,实际应用中搜索性能更加高效,建议多开一个子字段,如下示例,假设要根据title字段做关键字自动补全,不要改原字段的类型,多开一个子字段title.suggest,类型设置为completion,然后之后的suggest针对title.suggest字段做操作