SURE:增强不确定性估计的组合拳,快加入到你的训练指南吧 | CVPR 2024

论文重新审视了深度神经网络中的不确定性估计技术,并整合了一套技术以增强其可靠性。论文的研究表明,多种技术(包括模型正则化、分类器改造和优化策略)的综合应用显着提高了图像分类任务中不确定性预测的准确性 来源:晓飞的算法工程笔记 公众号 论文: SURE: SUrvey REcipes for buil

OI 数论中的上界估计与时间复杂度证明

渐进符号、约数函数、整除分块嵌套与杜教筛.

《最新出炉》系列初窥篇-Python+Playwright自动化测试-11-playwright操作iframe-上篇

1.简介 原估计宏哥这里就不对iframe这个知识点做介绍和讲解了,因为前边的窗口切换就为这种网页处理提供了思路,另一个原因就是虽然iframe很强大,但是现在很少有网站用它了。但是还是有小伙伴或者童鞋们私下问这个问题,那么宏哥就单独写一篇关于iframe网页处理的文章。iframe 是web自动化

AR Engine光照估计能力,让虚拟物体在现实世界更具真实感

AR是一项现实增强技术,即在视觉层面上实现虚拟物体和现实世界的深度融合,打造沉浸式AR交互体验。而想要增强虚拟物体与现实世界的融合效果,光照估计则是关键能力之一。 人们所看到的世界外观,都是由光和物质相互作用而决定的,当光源照射到物体上时,光线通过被吸收、反射和透射等方式,传递给人们物体的颜色、亮度

ViTPose+:迈向通用身体姿态估计的视觉Transformer基础模型

京东探索研究院联合悉尼大学在这方面做出了探索,提出了基于简单视觉transformer的姿态估计模型ViTPose和改进版本ViTPose+。ViTPose系列模型在MS COCO多个人体姿态估计数据集上达到了新的SOTA和帕累托前沿。

你也能成为“黑客”高手——趣谈Linux Shell编程语言

电影黑客帝国中的画面,估计会令很多人都叹为观止,其实挺简单的,只要会使用Linux操作系统就可以很简单地实现电脑屏幕的字符串雨了!是不是很高大上呢!

从DDPM到DDIM (一) 极大似然估计与证据下界

从DDPM到DDIM (一) 极大似然估计与证据下界 现在网络上关于DDPM和DDIM的讲解有很多,但无论什么样的讲解,都不如自己推到一遍来的痛快。笔者希望就这篇文章,从头到尾对扩散模型做一次完整的推导。本文的很多部分都参考了 Calvin Luo[1] 和 Stanley Chan[2] 写的经典

一种新的基于机器学习的示波法血压估计方法,开源、低功耗、低成本的人工智能软硬件提供者

具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI人工智能 血压的测量和预测是心脏病患者和有心脏问题的人的一个重要条件,应该保持持续的控制。在这项研究中,基于从使用袖带的个体获得的振荡波形,振荡波形分为三个周期。第一个周期是从起点到收缩压(SBP),第二个

npm模块全局安装后无法使用解决方案

好家伙 npm模块全局安装后无法使用 估计是少配了环境变量 1.使用命令: npm config get prefix 找到全局包的安装位置 2.随后我们右键"我的电脑"打开 "属性" 3.拉到最下打开 找到高级系统设置 4.找到环境变量 5.找到PATH 6.在最后添加前面找到的npm全局包安装地

NodeJS 实战系列:个人开发者应该如何选购云服务

这文章至少值一千元,因为这是我保守估计花出去的冤枉钱(请自行脑补一个苦笑的 emoji) 文章中会穿插选择云服务的一些建议,当然也会提供一些“薅羊毛”的技巧。不过在此之前我们要想清楚一件更重要的事情:我为了什么购买云服务 做产品还是做技术 这个问题不仅决定了你接下来的购买策略,还是你编码开始的前提。

彻底理解闭包实现原理

前言 闭包对于一个长期写 Java 的开发者来说估计鲜有耳闻,我在写 Python 和 Go 之前也是没怎么了解,光这名字感觉就有点"神秘莫测",这篇文章的主要目的就是从编译器的角度来分析闭包,彻底搞懂闭包的实现原理。 函数一等公民 一门语言在实现闭包之前首先要具有的特性就是:First class

还在困惑需要多少数据吗?来看看这份估计指南 | CVPR 2022

论文基于实验验证,为数据需求预测这一问题提供了比较有用的建议,详情可以直接看看Conclusion部分。 来源:晓飞的算法工程笔记 公众号 论文: How Much More Data Do I Need? Estimating Requirements for Downstream Tasks 论

机器学习策略篇:详解如何改善你的模型的表现(Improving your model performance)

如何改善模型的表现 学过正交化,如何设立开发集和测试集,用人类水平错误率来估计贝叶斯错误率以及如何估计可避免偏差和方差。现在把它们全部组合起来写成一套指导方针,如何提高学习算法性能的指导方针。 所以想要让一个监督学习算法达到实用,基本上希望或者假设可以完成两件事情。首先,的算法对训练集的拟合很好,这

[转帖]Nacos 获取配置时启用权限认证

默认情况下获取 Nacos 中的配置是不需要权限认证的, 这个估计是由其使用场景决定的(绝大多数都是仅内网可访问). 今天调查了下如何在获取配置时增加权限验证以提高其安全性. 1. 启用 Nacos 的权限认证 只要 nacos.core.auth.enabled 设置为 true 就行了. ###

这就是艺术,优雅的二维码生成器「GitHub 热点速览」

![](https://img2023.cnblogs.com/blog/759200/202306/759200-20230613224859934-1352488938.jpg) 平时如果没有需要一般那团黑乎乎的二维码,估计路过的人看见第一眼就不会再看

使用Wesky.Net.OpenTools包来快速实现嵌套型结构体数据转换功能

今天遇到有人提到结构体和byte数组互转的问题,我就顺便拿来水一篇。这是一个冷门的问题,估计使用的人不多。既然有需求,应该就有使用场景,那就顺便整一波。 为了达到效果,结构体、复杂结构体嵌套等都能实现转换,我就顺便做了个包更新来提供使用和下面的说明。 首先引入nuget包 Wesky.Net.Ope

机器学习策略篇:详解理解人的表现(Understanding human-level performance)

理解人的表现 人类水平表现这个词在论文里经常随意使用,但现在告诉这个词更准确的定义,特别是使用人类水平表现这个词的定义,可以帮助推动机器学习项目的进展。还记得上个博客中,用过这个词“人类水平错误率”用来估计贝叶斯误差,那就是理论最低的错误率,任何函数不管是现在还是将来,能够到达的最低值。先记住这点,

Java RMI遇到的Connection refused to Host: 127.x.x.x/192.x.x.x/10.x.x.x问题解决方法

问题故障解决记录 -- Java RMI Connection refused to host: x.x.x.x .... 在学习JavaRMI时,我遇到了以下情况 问题原因:可能大家的host是10或者192的私有地址,我估计都是和我一样的一个原因:/etc/hosts文件的配置问题(我是ubun

算法训练优化的经验:深入任务与数据的力量

引言 在算法优化的世界中,理解所面对的任务不仅是起点,也是整个优化过程的核心。在这篇博客中,我将分享我在算法训练和优化中的一些经验,以及一个关于场景流估计的项目中应用的案例。我希望这些经验能帮助你在未来的项目中取得更好的成绩。 1. 深入理解任务和数据 理解算法项目的独特目标和挑战是优化的第一步。明

[BUUCTF][Web][ACTF2020 新生赛]Exec 1

打开靶机对应url 显示可以输出ip 来进行ping操作 尝试试一下是否有命令注入的可能 127.0.0.1|ls 果然可以,输出结果 index.php PING 127.0.0.1 (127.0.0.1): 56 data bytes 按照套路估计是在根目录,试一下 127.0.0.1|ls /