PaddleNLP UIE -- 药品说明书信息抽取(名称、规格、用法、用量)

详细描述了 语料库、材料、训练、评估、预测,完整流程。对于细分场景推荐使用轻定制功能(标注少量数据进行模型微调)以进一步提升效果

AI识别检验报告 -PaddleNLP UIE-X 在医疗领域的实战

[TOC] # UIE-X在医疗领域的实战 **PaddleNLP全新发布UIE-X 🧾,除已有纯文本抽取的全部功能外,新增文档抽取能力。** UIE-X延续UIE的思路,**基于跨模态布局增强预训练模型**[文心ERNIE-Layout](https://github.com/PaddlePad

模型部署 — PaddleNLP 基于 Paddle Serving 快速使用(服务化部署 - Docker)— 图像识别 + 信息抽取(UIE-X)

[TOC] 图像识别 + 信息抽取(UIE-X),部署接口供别的应用调用 最终在自己部署的环境中识别时报错,不知道是不是和GPU有关,还在尝试中 ## 流程 - 在百度 BML CodeLab 中跑好模型(免费算力,玩玩够了) - 下载模型 (比较大,我这个有10G了,可以适当做裁剪) - Linu

基于 P-Tuning v2 进行 ChatGLM2-6B 微调实践

微调类型简介 1. SFT监督微调:适用于在源任务中具有较高性能的模型进行微调,学习率较小。常见任务包括中文实体识别、语言模型训练、UIE模型微调。优点是可以快速适应目标任务,但缺点是可能需要较长的训练时间和大量数据。 2. LoRA微调:通过高阶矩阵秩的分解减少微调参数量,不改变预训练模型参数,新

  • 首页
  • 上一页
  • 1
  • 下一页
  • 尾页