算法金 | 秒懂 AI - 深度学习五大模型:RNN、CNN、Transformer、BERT、GPT 简介

1. RNN(Recurrent Neural Network) 时间轴 1986年,RNN 模型首次由 David Rumelhart 等人提出,旨在处理序列数据。 关键技术 循环结构 序列处理 长短时记忆网络(LSTM)和门控循环单元(GRU) 核心原理 RNN 通过循环结构让网络记住以前的输入

循环神经网络RNN完全解析:从基础理论到PyTorch实战

>在本文中,我们深入探讨了循环神经网络(RNN)及其高级变体,包括长短时记忆网络(LSTM)、门控循环单元(GRU)和双向循环神经网络(Bi-RNN)。文章详细介绍了RNN的基本概念、工作原理和应用场景,同时提供了使用PyTorch构建、训练和评估RNN模型的完整代码指南。 > 作者 TechLea

[转帖][NL系列] RNN & LSTM 网络结构及应用

https://www.jianshu.com/p/f3bde26febed 这篇是 The Unreasonable Effectiveness of Recurrent Neural Networks(by Andrej Karpathy,Stanford的Li Fei-Fei的博士生。文章介绍

基于助听器开发的一种高效的语音增强神经网络

现代语音增强算法利用大量递归神经网络(RNNs)实现了显著的噪声抑制。然而,大型RNN限制了助听器硬件(hearing aid hardware,HW)的实际部署,这些硬件是电池供电的,运行在资源受限的微控制器单元(microcontroller units,MCU)上,内存和计算能力有限。在这项工

  • 首页
  • 上一页
  • 1
  • 下一页
  • 尾页