将强化学习重新引入 RLHF

我们很高兴在 TRL 中介绍 RLOO (REINFORCE Leave One-Out) 训练器。作为一种替代 PPO 的方法,RLOO 是一种新的在线 RLHF 训练算法,旨在使其更易于访问和实施。特别是, RLOO 需要的 GPU 内存更少,并且达到收敛所需的挂钟时间也更短。如下面的图表所示:

解密prompt系列34. RLHF之训练另辟蹊径:循序渐进 & 青出于蓝

前几章我们讨论了RLHF的样本构建优化和训练策略优化,这一章我们讨论两种不同的RL训练方案,分别是基于过程训练,和使用弱Teacher来监督强Student 循序渐进:PRM & ORM 想要获得过程

【转帖】什么是RLHF

什么是RLHF? **字面翻译:**RLHF (Reinforcement Learning from Human Feedback) ,即以强化学习方式依据人类反馈优化语言模型。 强化学习从人类反馈(RLHF)是一种先进的AI系统训练方法,它将强化学习与人类反馈相结合。它是一种通过将人类训练师的智

更难、更好、更快、更强:LLM Leaderboard v2 现已发布

摘要 评估和比较大语言模型 (LLMs) 是一项艰巨的任务。我们 RLHF 团队在一年前就意识到了这一点,当时他们试图复现和比较多个已发布模型的结果。这几乎是不可能完成的任务:论文或营销发布中的得分缺乏可复现的代码,有时令人怀疑,大多数情况下只是通过优化的提示或评估设置来尽量提升模型表现。因此,他们

【转帖】ChatGPT的前身:InstructGPT

https://www.jianshu.com/p/6daf35cbc46a ChatGPT的论文目前还没有发布,在其官方博客(https://openai.com/blog/chatgpt/)中对方法有这样的简述: 我们使用来自人类反馈的强化学习(RLHF)来训练这个模型,使用与Instructi

  • 首页
  • 上一页
  • 1
  • 下一页
  • 尾页