阿里云最近发布了两款大型开源模型QWen-7B和QWen-7b-Chat,这两款模型的参数规模达到了70亿,用户可以在Hugging Face和ModelScope上免费使用。尽管大型模型的热度近期有所下降,但阿里云选择开源模型来赢得用户的支持,并保持自身在竞争中的优势。这一举措也引起了人们的关注,因为不开源可能会导致信息泄露的风险。通过开源模型,阿里云既能满足用户需求,又能保持技术竞争力。
本文主要是使用unsloth框架针对Qwen1.5的高效微调实验,提供了详细的对比代码以及不同维度的对比分析结果。
检索增强生成(RAG)实践:基于LlamaIndex和Qwen1.5搭建智能问答系统 什么是 RAG LLM 会产生误导性的 “幻觉”,依赖的信息可能过时,处理特定知识时效率不高,缺乏专业领域的深度洞察,同时在推理能力上也有所欠缺。 正是在这样的背景下,检索增强生成技术(Retrieval-Augm
一.启动命令过程日志 启动命令bash ./run.sh -c local -i 0 -b hf -m Qwen-1_8B-Chat -t qwen-7b-chat。输入日志如下所示: root@MM-202203161213:/mnt/l/20230918_RAG方向/QAnything# bas
MoneyPrinterPlus现在支持批量混剪,一键AI生成视频,一键批量发布短视频这些功能了。 之前支持的大模型是常用的云厂商,比如OpenAI,Azure,Kimi,Qianfan,Baichuan,Tongyi Qwen, DeepSeek这些。 支持云厂商的原因是现在大模型使用基本都很便宜