其实KL散度在这个游戏里的作用不大,游戏的action比较简单,不像LM里的action是一个很大的向量,可以直接用surr1,最大化surr1,实验测试确实是这样,而且KL的系数不能给太大,否则惩罚力度太大,action model 和ref model产生的action其实分布的差距并不太大 i
这个难度有些大,有两个policy,一个负责更新策略,另一个负责提供数据,实际这两个policy是一个东西,用policy1跑出一组数据给新的policy2训练,然后policy2跑数据给新的policy3训练,,,,直到policy(N-1)跑数据给新的policyN训练,过程感觉和DQN比较像,
本文分享自华为云社区《MindSpore强化学习:使用PPO配合环境HalfCheetah-v2进行训练》,作者: irrational。 半猎豹(Half Cheetah)是一个基于MuJoCo的强化学习环境,由P. Wawrzyński在“A Cat-Like Robot Real-Time L
我们很高兴在 TRL 中介绍 RLOO (REINFORCE Leave One-Out) 训练器。作为一种替代 PPO 的方法,RLOO 是一种新的在线 RLHF 训练算法,旨在使其更易于访问和实施。特别是, RLOO 需要的 GPU 内存更少,并且达到收敛所需的挂钟时间也更短。如下面的图表所示:
由百川智能推出的新一代开源大语言模型,采用2.6万亿Tokens的高质量语料训练,在多个权威的中文、英文和多语言的通用、领域benchmark上取得同尺寸最佳的效果,发布包含有7B、13B的Base和经过PPO训练的Chat版本,并提供了Chat版本的4bits量化。 一.Baichuan2模型 B