[转帖]Balancing “If it ain’t broke, don’t fix it” vs. “Release early and often”

https://www.redhat.com/en/blog/balancing-if-it-aint-broke-dont-fix-it-vs-release-early-and-often Every organization faces a war between two schools of

naiveui | select下拉选择自定义选项渲染

要提升价值就要改变; 要达到完美就得经常改变。 To improve is to change; to be perfect is to change often.

机器学习策略篇:快速搭建你的第一个系统,并进行迭代(Build your first system quickly, then iterate)

快速搭建的第一个系统,并进行迭代 如果正在考虑建立一个新的语音识别系统,其实可以走很多方向,可以优先考虑很多事情。 比如,有一些特定的技术,可以让语音识别系统对嘈杂的背景更加健壮,嘈杂的背景可能是说咖啡店的噪音,背景里有很多人在聊天,或者车辆的噪音,高速上汽车的噪音或者其他类型的噪音。有一些方法可以

机器学习策略篇:详解清除标注错误的数据(Cleaning up Incorrectly labeled data)

清除标注错误的数据 监督学习问题的数据由输入\(x\)和输出标签 \(y\) 构成,如果观察一下的数据,并发现有些输出标签 \(y\) 是错的。的数据有些标签是错的,是否值得花时间去修正这些标签呢? 看看在猫分类问题中,图片是猫,\(y=1\);不是猫,\(y=0\)。所以假设看了一些数据样本,发现

机器学习策略篇:详解进行误差分析(Carrying out error analysis)

从一个例子开始讲吧。 假设正在调试猫分类器,然后取得了90%准确率,相当于10%错误,,开发集上做到这样,这离希望的目标还有很远。也许的队员看了一下算法分类出错的例子,注意到算法将一些狗分类为猫,看看这两只狗,它们看起来是有点像猫,至少乍一看是。所以也许的队友给一个建议,如何针对狗的图片优化算法。试

机器学习策略篇:详解如何改善你的模型的表现(Improving your model performance)

如何改善模型的表现 学过正交化,如何设立开发集和测试集,用人类水平错误率来估计贝叶斯错误率以及如何估计可避免偏差和方差。现在把它们全部组合起来写成一套指导方针,如何提高学习算法性能的指导方针。 所以想要让一个监督学习算法达到实用,基本上希望或者假设可以完成两件事情。首先,的算法对训练集的拟合很好,这

机器学习策略篇:详解理解人的表现(Understanding human-level performance)

理解人的表现 人类水平表现这个词在论文里经常随意使用,但现在告诉这个词更准确的定义,特别是使用人类水平表现这个词的定义,可以帮助推动机器学习项目的进展。还记得上个博客中,用过这个词“人类水平错误率”用来估计贝叶斯误差,那就是理论最低的错误率,任何函数不管是现在还是将来,能够到达的最低值。先记住这点,

机器学习策略篇:详解为什么是人的表现?(Why human-level performance?)

为什么是人的表现? 在过去的几年里,更多的机器学习团队一直在讨论如何比较机器学习系统和人类的表现,为什么呢? 认为有两个主要原因,首先是因为深度学习系统的进步,机器学习算法突然变得更好了。在许多机器学习的应用领域已经开始见到算法已经可以威胁到人类的表现了。其次,事实证明,当试图让机器做人类能做的事情

机器学习策略:详解什么时候该改变开发/测试集和指标?(When to change dev/test sets and metrics)

什么时候该改变开发/测试集和指标? 有时候在项目进行途中,可能意识到,目标的位置放错了。这种情况下,应该移动的目标。 来看一个例子,假设在构建一个猫分类器,试图找到很多猫的照片,向的爱猫人士用户展示,决定使用的指标是分类错误率。所以算法\(A\)和\(B\)分别有3%错误率和5%错误率,所以算法\(

机器学习策略篇:详解开发集和测试集的大小(Size of dev and test sets)

在深度学习时代,设立开发集和测试集的方针也在变化。 可能听说过一条经验法则,在机器学习中,把取得的全部数据用70/30比例分成训练集和测试集。或者如果必须设立训练集、开发集和测试集,会这么分60%训练集,20%开发集,20%测试集。在机器学习的早期,这样分是相当合理的,特别是以前的数据集大小要小得多

  • 首页
  • 上一页
  • 1
  • 下一页
  • 尾页