以前使用Neo4j图数据库,考虑到生产环境需要最终选择了NebulaGraph图数据库。对于数据要求比较高的领域,比如医疗、财务等,暂时还是离不开知识图谱的。后面主要围绕LLM+KG做一些行业解决方案和产品,涉及的技术主要是对话、推荐、检索这3个大的方向,可用于客服系统和聊天机器人等。 1.安装Ne
图数据库是专门存储庞大的图形网络并从中检索信息的数据库。它可以将图中的数据高效存储为点(Vertex)和边(Edge),还可以将属性(Property)附加到点和边上。本文以示例数据集basketballplayer为例,通过nGQL操作和Python脚本两种方式构建图谱。数据[10]和代码[9]详
自动信息抽取发展了几十年,虽然模型很多,但是泛化能力很难用满意来形容,直到LLM的诞生。虽然最终信息抽取质量部分还是需要专家审核,但是已经极大的提高了信息抽取的效率。因为传统方法需要大量时间来完成数据清洗、标注和训练,然后来实体抽取、实体属性抽取、实体关系抽取、事件抽取、实体链接和指代消解等等。现在
在官方例子中给出了通过chain = NebulaGraphQAChain.from_llm(ChatOpenAI(temperature=0), graph=graph, verbose=True)来检索NebulaGraph图数据库。本文介绍了通过GPT2替换ChatOpenAI的思路和实现,暂