本项目旨在研究利用深度学习模型进行水果图像分类的方法,具体包括两个主要任务:一是使用卷积神经网络(CNN)模型进行水果图片的分类,二是探索轻量级神经网络模型MobileNetV2在水果图像分类中的应用。
PaddleOCR提供DB文本检测算法,支持MobileNetV3、ResNet50_vd两种骨干网络,可以根据需要选择相应的配置文件,启动训练。 本节以icdar15数据集、MobileNetV3作为骨干网络的DB检测模型(即超轻量模型使用的配置)为例,介绍如何完成PaddleOCR中文字检测模型的训练、评估与测试。
论文提出了T2T-ViT模型,引入tokens-to-token(T2T)模块有效地融合图像的结构信息,同时借鉴CNN结果设计了deep-narrow的ViT主干网络,增强特征的丰富性。在ImageNet上从零训练时,T2T-ViT取得了优于ResNets的性能MobileNets性能相当 来源:晓