前言 今天大姚给大家分享一个.NET开源、免费、跨平台(支持Windows、Linux、macOS多个操作系统)的机器学习框架:ML.NET。并且本文将会带你快速使用ML.NET训练一个属于自己的图像分类模型,对图像进行分类。 ML.NET框架介绍 ML.NET 允许开发人员在其 .NET 应用程序
`ML.NET` 是微软推出的为. NET 平台设计的深度学习库,通过这个东西(`ModelBuilder`)可以自己构建模型,并用于后来的推理与数据处理。虽然设计是很好的,但是由于现在的 AI 发展基本上都以 `python` 实现作为基础,未来这个东西的发展不好说,特别是模型构建部分。我个人认为
又是 AI 神仙打架的一周,上周 OpenAI 发布了最新的 GPT-4o 模型,而谷歌也紧跟着开源了 Gemma 2 模型。随着 AI 大模型不断地变强,各大科技巨头正利用它们重塑自家的产品,这也让大模型算法工程师变得炙手可热,相关岗位需求正旺。 对于普通程序员来说,想要转型成为大模型算法专家,可
对于 ML 模型训练而言,好的数据集能让结果更健壮,cleanlab 是一个降低数据噪音,及时帮你修正数据集错误的工具。好的工具能让你的结果更完美。同样的,RedTeam-Tools 提高了渗透测试的能力,也间接地让你的安全系统更牢固。DocsGPT 一看便知它是个 Docs + GPT 的结合体,
SLC(单层存储单元):每个Cell单元存储1bit信息,只有0、1两种电压变化,结构简单,电压控制也快速。 优点:寿命长、性能强 缺点:容量低、成本高 MLC(多层存储单元):每个cell单元存储2bit信息。写入性能、可靠性能降低了。 TLC(三层存储单元):每个cell单元存储3bit信息。成
https://zhuanlan.zhihu.com/p/359823092 在定位机器性能问题的时候,有时会觉得机器莫名其妙地跑的慢,怎么也看不出来问题。CPU频率也正常,程序热点也没问题,可就是慢。这时候可以检查一下内存的访问速度,看看是不是机器的内存存在什么问题。Intel Memory La
在前端对 Cookie 进行加密时,你可以使用加密算法对 Cookie 的值进行加密,然后再将加密后的值存储到 Cookie 中。常用的加密算法包括对称加密算法(如 AES)和非对称加密算法(如 RSA)。以下是一个简单的示例,演示如何在前端使用 AES 对 Cookie 进行加密: // 引入加密
阅读《[基于 Flink ML 搭建的智能运维算法服务及应用](https://mp.weixin.qq.com/s/yhXiQtUSR4hxp9XWrkiiew "基于 Flink ML 搭建的智能运维算法服务及应用")》一文后,对其中日志聚类算法有了些思考。 ### 概述 日志聚类,简而言之是对
最近,特斯拉宣布召回110万辆车,名义上是纠正单踏板不良习惯,背后原因可能是这些车辆的电子控制单元存在缺陷,可能导致刹车失灵(潮州等交通事故至今没有定论)。这个事件引起了人们对于机器学习技术和人机责任划分的关注和讨论。 机器学习技术在汽车制造业中的应用越来越广泛,可以帮助汽车制造商提高生产效率、降低
摘要:Workflow是将ML Ops(机器学习和DevOps的组合实践)应用于ModelArts平台,可以让您更高效的完成AI开发。 本文分享自华为云社区《云图说 | 第263期 Workflow流水线工具,助您高效完成AI开发~》,作者:阅识风云。 Workflow(也称工作流)本质是开发者基于
memtester 以及 mlc 简单学习 下载 memtester https://pyropus.ca./software/memtester/ 下载好后直接进行 make 和make install 就可以了. Intel MLC Intel® Memory Latency Checker 下
坊间有传MacOs系统不适合机器(ml)学习和深度(dl)学习,这是板上钉钉的刻板印象,就好像有人说女生不适合编程一样的离谱。现而今,无论是Pytorch框架的MPS模式,还是最新的Tensorflow2框架,都已经可以在M1/M2芯片的Mac系统中毫无桎梏地使用GPU显卡设备,本次我们来分享如何在
人工智能、机器学习和深度学习覆盖的技术范畴是逐层递减的,三者的关系:人工智能 > 机器学习 > 深度学习。 人工智能(ArtificialIntelligence,AI)是最宽泛的概念,是研发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学 机器学习(MachineLear
📚️Reference: https://github.com/grafana/intro-to-mlt 这是关于 Grafana 中可观察性的三个支柱的一系列演讲的配套资源库。 它以一个自我封闭的 Docker 沙盒的形式出现,包括在本地机器上运行和实验所提供的服务所需的所有组件。 Grafan
摘要:华为云数据库创新Lab在论文《MARINA: An MLP-Attention Model for Multivariate Time-Series Analysis》中提出了华为自研的自回归时序神经网络模型,可用于时序数据的预测以及异常检测。 本文分享自华为云社区《CIKM'22 MARIN
简介 在过去的几十年里,许多机器学习(ML)方法被引入来分析呼吸周期的声音,包括爆裂声、咳嗽声和喘息声[1-6]。然而,几乎所有传统的ML模型都完全依赖于手工制作的功能。此外,需要高度复杂的预处理步骤来利用设计的特征[4-6]。因此,仅仅基于ML的模型可能对肺部声音中的外部/内部噪声不具有鲁棒性,并
算法优化 并行注意力机制 \[串行版本: y = x + MLP(LayerNorm(x + Attention(LayerNorm(x)))) \]\[并行版本: y = x + MLP(LayerNorm(x)) + Attention(LayerNorm(x)))) \]乍一看确实不是等价的,
我们很高兴地宣布,我们正在与 Wiz 合作,目标是提高我们平台和整个 AI/ML 生态系统的安全性。 Wiz 研究人员 与 Hugging Face 就我们平台的安全性进行合作并分享了他们的发现。 Wiz 是一家云安全公司,帮助客户以安全的方式构建和维护软件。 随着这项研究的发布,我们将借此机会重点
博客地址:https://www.cnblogs.com/zylyehuo/ # conda create --prefix='路径' python='版本号' conda create --prefix=G:\anaconda\anaconda3\envs\ml python=3.8
应用启动源码分析 在HomeActvity中的OnCreate方法会调用initLaunchpad private void initLaunchpad() { mLauncherView.setHasFixedSize(true); StaggeredGridLayoutManager layou