一、摘要 在家中睡眠期间对人体生命体征进行实时监测对于实现及时检测和救援至关重要。然而,现有的用于监测人类生命体征的智能设备存在高复杂性、高成本、侵入性或低准确性的缺点。因此,迫切需要开发一种简化、无干扰、舒适、低成本的睡眠实时监测系统。在本研究中,基于低成本的压电陶瓷传感器开发了一种新型智能枕头。
现代语音增强算法利用大量递归神经网络(RNNs)实现了显著的噪声抑制。然而,大型RNN限制了助听器硬件(hearing aid hardware,HW)的实际部署,这些硬件是电池供电的,运行在资源受限的微控制器单元(microcontroller units,MCU)上,内存和计算能力有限。在这项工
摘要 基于毫米波的手势识别技术提供了良好的人机交互体验。先前的工作专注于近距离手势识别,但在范围扩展方面不够,即他们无法识别距离相当大的噪声运动超过一米的手势。在本文中,我们利用一种新的数据处理方法和定制的人工卷积神经网络(CNN)设计了一个远程手势识别模型。首先,我们将手势分解为多个反射点,并提取
概要 现代基于深度学习的模型在语音增强任务方面取得了显著的性能改进。然而,最先进模型的参数数量往往太大,无法部署在现实世界应用的设备上。为此,我们提出了微小递归U-Net(TRU-Net),这是一种轻量级的在线推理模型,与当前最先进的模型的性能相匹配。TRU-Net的量化版本的大小为362千字节,足
简介 在过去的几十年里,许多机器学习(ML)方法被引入来分析呼吸周期的声音,包括爆裂声、咳嗽声和喘息声[1-6]。然而,几乎所有传统的ML模型都完全依赖于手工制作的功能。此外,需要高度复杂的预处理步骤来利用设计的特征[4-6]。因此,仅仅基于ML的模型可能对肺部声音中的外部/内部噪声不具有鲁棒性,并
鸟叫声识别在鸟类保护中具有重要意义。通过适当的声音分类,研究可以自动预测该地区的生活质量。如今,深度学习模型被用于对鸟类声音数据进行高精度的分类。然而,现有的大多数鸟类声音识别模型的泛化能力较差,并且采用复杂的算法来提取鸟类声音特征。为了解决这些问题,本文构建了一个包含264种鸟类的大数据集,以增强
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 前言 虽然血压(BP)的测量现在广泛地由自动无创血压(NIBP)监测设备进行,因为它们不需要熟练的临床医生,也不存在并发症的风险,但其准确性仍存疑。本研究开发了一种新的基于端到端深度学习的算法,该算法直接
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 关键词识别 (KWS) 是人机界面的主要组成部分。 KWS 的目标是在低误报 (FA) 率下最大化检测精 度,同时最小化占用空间大小、延迟和复杂性。为 了实现这些目标,我们研究了卷积循环神经网络 (CRN
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 声音事件的分类精度与特征提取有很强的关系。本文将深度特征用于环境声音分类(ESC)问题。深层特征是通过使用新开发的卷积神经网络(CNN)模型的全连接层来提取的,该模型通过频谱图图像以端到端的方式进行训练。
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 婴儿哭闹识别是一项具有挑战性的任务,因为很难确定能够让研究人员清楚区分不同类型哭闹的语音特征。然而,婴儿哭闹被视为一种不同的言语交流方式。利用适当的人工智能模型,利用梅尔倒谱系数(MFCC)可以区分婴儿哭
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 咳嗽检测是一种很有前途的检测呼吸道疾病各种病理严重程度的技术。自动咳嗽检测系统的开发将成为早期诊断的最佳跟踪工具。长期以患者为中心的远程咳嗽严重程度监测将改变医疗基础设施的游戏规则,因为在过去几十年中,远
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 我们提出了一种利用由长短期记忆 (LSTM) 单元构建的深度循环神经网络来降 噪心电图信号 (ECG) 的新方法。该网络使 用动态模型 ECG 生成的合成数据进行预训 练,并使用来自 Physionet
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 打鼾是一种普遍的症状,严重影响睡眠呼吸障碍患者(单纯打鼾者)、阻塞性睡眠呼吸暂停(OSA)患者及其床伴的生活质量。研究表明,打鼾可用于OSA的筛查和诊断。因此,从夜间睡眠呼吸音频中准确检测打鼾声一直是最重
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 胎心率(FHR)对于评估胎儿的健康状况具 有重要意义。然而,基于传统的分类标准并不准确。 随着计算机信息技术的飞速发展,计算机技术对于胎 儿电子监护(EFM)中的胎心率分析至关重要。胎心率 分为正常、可疑
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 准确的人类活动识别(HAR)是实现新兴的上下文感知应用程序的关键,这些应用程序需要了解和识别人类行为,例如监测独居的残疾人或老年人。传统上,HAR是通过环境传感器(例如,相机)或通过可穿戴设备(例如,具有
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI 据世界心脏联合会统计,截至 2022 年,全球有 13 亿人被诊断患有高血压,每年约有 1000 万人死于高血压。一个人有必要拥有有益于心脏健康的生活方式,以防止被诊断出患有心血管疾病(CVD)和动脉疾病
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI人工智能 本文介绍了一种用于实时语音增强的双信号变换 LSTM 网络 (DTLN),作为深度噪声抑制挑战 (DNS-Challenge) 的一部分。该方法将短时傅立叶变换 (STFT) 和学习分析和综合基础
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI人工智能 心血管疾病是最严重的死亡原因之一,每年在全世界造成严重的生命损失。持续监测血压似乎是最可行的选择,但这需要一个侵入性的过程,带来了几层复杂性。这促使我们开发一种方法,通过使用光体积描记图(PPG)
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI人工智能 血压的测量和预测是心脏病患者和有心脏问题的人的一个重要条件,应该保持持续的控制。在这项研究中,基于从使用袖带的个体获得的振荡波形,振荡波形分为三个周期。第一个周期是从起点到收缩压(SBP),第二个
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI人工智能 卷积神经网络(CNN)通过从原始数据中自动学习层次特征表示,在图像识别任务中取得了巨大成功。虽然大多数时间序列分类(TSC)文献都集中在1D信号上,但本文使用递归图(RP)将时间序列转换为2D纹理