Lasso线性回归(Least Absolute Shrinkage and Selection Operator)是一种能够进行特征选择和正则化的线性回归方法。其重要的思想是L1正则化:其基本原理为在损失函数中加上模型权重系数的绝对值,要想让模型的拟合效果比较好,就要使损失函数尽可能的小,因此这样
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 开篇引言 正则化定义 正则化通俗理解 正则化类型 L1正则化(Lasso回归) L2正则化(Ridge回归) Elastic Net Lp正则化 Early Stopping Dropo
作者:Seth Larson 译者:豌豆花下猫@Python猫 英文:Regex character “$” doesn't mean “end-of-string” 转载请保留作者及译者信息! 这篇文章写一写我最近在用 Python 的正则表达式模块(re)开发 CPython 的 SBOM 工具
微软semantic-kernel(SK)团队发布了一篇博客文章:Early Lessons From GPT-4: The Schillace Laws[1] ,微软的CVP , Deputy CTO Sam Schillace 根据他在GPT-4方面的经验制定了使用LLM创建软件的九项原则,称之