DDP:微软提出动态detection head选择,适配计算资源有限场景 | CVPR 2022

DPP能够对目标检测proposal进行非统一处理,根据proposal选择不同复杂度的算子,加速整体推理过程。从实验结果来看,效果非常不错 来源:晓飞的算法工程笔记 公众号 论文: Should All Proposals be Treated Equally in Object Detectio

从DDPM到DDIM (一) 极大似然估计与证据下界

从DDPM到DDIM (一) 极大似然估计与证据下界 现在网络上关于DDPM和DDIM的讲解有很多,但无论什么样的讲解,都不如自己推到一遍来的痛快。笔者希望就这篇文章,从头到尾对扩散模型做一次完整的推导。本文的很多部分都参考了 Calvin Luo[1] 和 Stanley Chan[2] 写的经典

从DDPM到DDIM

现在网络上关于DDPM和DDIM的讲解有很多,但无论什么样的讲解,都不如自己推到一边来的痛快。笔者希望就这篇文章,从头到尾对扩散模型DDPM及其加速方法DDIM做一次完整的推导。

Pytorch DistributedDataParallel(DDP)教程二:快速入门实践篇

一、简要回顾DDP 在上一篇文章中,简单介绍了Pytorch分布式训练的一些基础原理和基本概念。简要回顾如下: 1,DDP采用Ring-All-Reduce架构,其核心思想为:所有的GPU设备安排在一个逻辑环中,每个GPU应该有一个左邻和一个右邻,设备从它的左邻居接收数据,并将数据汇总后发送给右邻。

diffusion model(一):DDPM技术小结 (denoising diffusion probabilistic)

发布日期:2023/05/18 主页地址:http://myhz0606.com/article/ddpm 1 从直觉上理解DDPM 在详细推到公式之前,我们先从直觉上理解一下什么是扩散 对于常规的生成模型,如GAN,VAE,它直接从噪声数据生成图像,我们不妨记噪声数据为\(z\),其生成的图片为\

一文详解扩散模型:DDPM

我们要介绍的扩散模型的理论基础和非常重要的DDPM,扩散模型的实现并不复杂,但其背后的数学原理却非常丰富。在这里我会介绍这些重要的数学原理,省去了这些公式的推导计算,如果你对这些推导感兴趣,可以学习参

  • 首页
  • 上一页
  • 1
  • 下一页
  • 尾页