论文基于实验验证,为数据需求预测这一问题提供了比较有用的建议,详情可以直接看看Conclusion部分。 来源:晓飞的算法工程笔记 公众号 论文: How Much More Data Do I Need? Estimating Requirements for Downstream Tasks 论
论文重新审视了深度神经网络中的不确定性估计技术,并整合了一套技术以增强其可靠性。论文的研究表明,多种技术(包括模型正则化、分类器改造和优化策略)的综合应用显着提高了图像分类任务中不确定性预测的准确性 来源:晓飞的算法工程笔记 公众号 论文: SURE: SUrvey REcipes for buil
论文提出了一种可扩展的多数据集目标检测器(ScaleDet),可通过增加训练数据集来扩大其跨数据集的泛化能力。与现有的主要依靠手动重新标记或复杂的优化来统一跨数据集标签的多数据集学习器不同,论文引入简单且可扩展的公式来为多数据集训练产生语义统一的标签空间,通过视觉文本对齐进行训练,能够学习跨数据集的
论文将Multiscale Vision Transformers (MViTv2) 作为图像和视频分类以及对象检测的统一架构进行研究,结合分解的相对位置编码和残差池化连接提出了MViT的改进版本 来源:晓飞的算法工程笔记 公众号 论文: MViTv2: Improved Multiscale Vi
DPP能够对目标检测proposal进行非统一处理,根据proposal选择不同复杂度的算子,加速整体推理过程。从实验结果来看,效果非常不错 来源:晓飞的算法工程笔记 公众号 论文: Should All Proposals be Treated Equally in Object Detectio
最近,有一些大型内核卷积网络的研究,但考虑到卷积的平方复杂度,扩大内核会带来大量的参数,继而引发严重的优化问题。受人类视觉的启发,论文提出了外围卷积,通过参数共享将卷积的复杂性从 \(O(K^{2})\) 降低到 \(O(\mathrm{log} K)\),有效减少 90% 以上的参数数量并设法将内
摘要:本文提出了一种针对文字识别的半监督方法。区别于常见的半监督方法,本文的针对文字识别这类序列识别问题做出了特定的设计。 本文分享自华为云社区《[CVPR 2022] 不使用人工标注提升文字识别器性能》,作者:Hint。 本文提出了一种针对文字识别的半监督方法。区别于常见的半监督方法,本文的针对文
摘要:这是发表于CVPR 2020的一篇论文的复现模型。 本文分享自华为云社区《Panoptic Deeplab(全景分割PyTorch)》,作者:HWCloudAI 。 这是发表于CVPR 2020的一篇论文的复现模型,B. Cheng et al, “Panoptic-DeepLab: A Si