还在困惑需要多少数据吗?来看看这份估计指南 | CVPR 2022

论文基于实验验证,为数据需求预测这一问题提供了比较有用的建议,详情可以直接看看Conclusion部分。 来源:晓飞的算法工程笔记 公众号 论文: How Much More Data Do I Need? Estimating Requirements for Downstream Tasks 论

CvT:微软提出结合CNN的ViT架构 | 2021 arxiv

CvT将Transformer与CNN在图像识别任务中的优势相结合,从CNN中借鉴了多阶段的层级结构设计,同时引入了Convolutional Token Embedding和Convolutional Projection操作增强局部建模能力,在保持计算效率的同时实现了卓越的性能。此外,由于卷积的

drozer中文乱码解决方法

drozer简介 drozer 是 Android 的安全测试框架。 drozer 允许您通过扮演应用的角色并与 Android 运行时、其他应用的 IPC 端点和底层操作系统进行交互来搜索应用和设备中的安全漏洞。 drozer 提供了一些工具来帮助您使用、分享和理解公共 Android 漏洞。 d

漏洞复现之CVE-2012-1823(PHP-CGI远程代码执行)

关于CGI知识点 CGI模式下的参数: -c 指定php.ini文件的位置 -n 不要加载php.ini文件 -d 指定配置项 -b 启动fastcgi进程 -s 显示文件源码 -T 执行指定次该文件 -h和-? 显示帮助 题目如下图,没有什么发现 目录扫描一下 dirsearch -u http:

Windows CSC提权漏洞复现(CVE-2024-26229)

漏洞信息 Windows CSC服务特权提升漏洞。 当程序向缓冲区写入的数据超出其处理能力时,就会发生基于堆的缓冲区溢出,从而导致多余的数据溢出到相邻的内存区域。这种溢出会损坏内存,并可能使攻击者能够执行任意代码或未经授权访问系统。本质上,攻击者可以编写触发溢出的恶意代码或输入,从而控制受影响的系统

[转帖]CVE-2020-5902:F5 BIG-IP 远程代码执行漏洞复现

漏洞复现 Timeline Sec 2020-09-29 9,863 关注我们,一起学安全!本文作者:TeddyGrey@Timeline Sec本文字数:1197阅读时长:3~4min声明:请勿用作违法用途,否则后果自负0x01 简介 F5 BIGIP 链路控制器用于最大限度提升链路性能与可用性的

【Azure 环境】Azure 云环境对于OpenSSL 3.x 的严重漏洞(CVE-2022-3602 和 CVE-2022-3786)的处理公告

问题描述 引用报告:(OpenSSL3.x曝出严重漏洞 : https://www.ctocio.com/ccnews/37529.html ) 最近OpenSSL 3.x 爆出了严重安全漏洞,分别是 CVE-2022-3602 和 CVE-2022-3786. CVE-2022-3602 缓冲区溢

umich cv-3-1

UMICH CV Neural Network 对于传统的线性分类器,分类效果并不好,所以这节引入了一个两层的神经网络,来帮助我们进行图像分类 可以看出它的结构十分简单,x作为输入层,经过max(0,W1*x)到达h隐藏层,再经过W2到达s输出层 如果我们对隐藏层的结果进行可视化,我们可以看到如下的

umich cv-2-2

UMICH CV Linear Classifiers 在上一篇博文中,我们讨论了利用损失函数来判断一个权重矩阵的好坏,在这节中我们将讨论如何去找到最优的权重矩阵 想象我们要下到一个峡谷的底部,我们自然会选择下降最快的斜坡,换成我们这个问题就是要求权重矩阵相对于损失函数的梯度函数,最简单的方法就是使

umich cv-2-1

UMICH CV Linear Classifiers 对于使用线性分类器来进行图片分类,我们可以给出这样的参数化方法: 而对于这样一个式子,我们怎么去理解呢? 首先从代数的角度,这个f(x,W)就是一张图片的得分,我们可以将一张图片所有的像素点输入,乘以一个权重矩阵,再加上一个偏置项b,就得到f(

AIGC:新AI时代,推动数字人进化的引擎

摘要:CV、NLP、大模型...AI技术的加持下,让数字人内外在更加生动真实。在未来的发展中,数字人的应用场景越来越广泛,并将发挥出重要的作用,让美好照进生活。 本文分享自华为云社区《AIGC:新AI时代,推动数字人进化的引擎》,作者:华为云社区精选。 现在我们在手机视频里经常看到,几百平方米的空旷

SURE:增强不确定性估计的组合拳,快加入到你的训练指南吧 | CVPR 2024

论文重新审视了深度神经网络中的不确定性估计技术,并整合了一套技术以增强其可靠性。论文的研究表明,多种技术(包括模型正则化、分类器改造和优化策略)的综合应用显着提高了图像分类任务中不确定性预测的准确性 来源:晓飞的算法工程笔记 公众号 论文: SURE: SUrvey REcipes for buil

Redis漏洞总结--未授权--沙箱绕过--(CNVD-2015-07557)&&(CNVD-2019-21763)&&(CVE-2022-0543)

Redis未授权--沙箱绕过--(CNVD-2015-07557)&&(CNVD-2019-21763)&&(CVE-2022-0543) 环境复现 采用Vulfocus靶场进行环境复现,官网docker搭建有问题,具体搭建教程参考vulfocus不能同步的解决方法/vulfocus同步失败 CNV

LeetCode 周赛 336,多少人直接 CV?

本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问。 大家好,我是小彭。 今天早上是 LeetCode 第 336 场周赛,你参加了吗?这场周赛整体质量比较高,但是最后一题是老题,CV 能过。但是输入数据范围被降低了,这操作也是没谁了。 2587. 统计范围内的

ScaleDet:AWS 基于标签相似性提出可扩展的多数据集目标检测器 | CVPR 2023

论文提出了一种可扩展的多数据集目标检测器(ScaleDet),可通过增加训练数据集来扩大其跨数据集的泛化能力。与现有的主要依靠手动重新标记或复杂的优化来统一跨数据集标签的多数据集学习器不同,论文引入简单且可扩展的公式来为多数据集训练产生语义统一的标签空间,通过视觉文本对齐进行训练,能够学习跨数据集的

MViTv2:Facebook出品,进一步优化的多尺度ViT | CVPR 2022

论文将Multiscale Vision Transformers (MViTv2) 作为图像和视频分类以及对象检测的统一架构进行研究,结合分解的相对位置编码和残差池化连接提出了MViT的改进版本 来源:晓飞的算法工程笔记 公众号 论文: MViTv2: Improved Multiscale Vi

DDP:微软提出动态detection head选择,适配计算资源有限场景 | CVPR 2022

DPP能够对目标检测proposal进行非统一处理,根据proposal选择不同复杂度的算子,加速整体推理过程。从实验结果来看,效果非常不错 来源:晓飞的算法工程笔记 公众号 论文: Should All Proposals be Treated Equally in Object Detectio

PeLK:101 x 101 的超大卷积网络,同参数量下反超 ViT | CVPR 2024

最近,有一些大型内核卷积网络的研究,但考虑到卷积的平方复杂度,扩大内核会带来大量的参数,继而引发严重的优化问题。受人类视觉的启发,论文提出了外围卷积,通过参数共享将卷积的复杂性从 \(O(K^{2})\) 降低到 \(O(\mathrm{log} K)\),有效减少 90% 以上的参数数量并设法将内

EPSS 解读:与 CVSS 相比,孰美?

通用漏洞评分系统(CVSS)是当前应用最频繁的评分系统以评估安全漏洞的严重性。但是,由于该系统在评估漏洞和优先级排序方面存在不足而遭受批评。因此,有部分专业人士呼吁使用漏洞利用预测评分系统(EPSS)或将 CVSS 与 EPSS 结合来推动漏洞指标变得更加可执行和高效。与 CVSS 一样,EPSS

Tomcat--文件上传--文件包含--(CVE-2017-12615)&&(CVE-2020-1938)

Tomcat--文件上传--文件包含--(CVE-2017-12615)&&(CVE-2020-1938) 复现环境 采用Vulfocus靶场环境进行复现,搭建操作和文章参考具体搭建教程参考vulfocus不能同步的解决方法/vulfocus同步失败。 CVE-2017-12615 文件上传 漏洞简