Coding:小写一个debugfs 上一次整活还是在上一个月,写了一个简单的module并且熟悉了module的挂载查看和卸载。这一次我们自然玩一个大的,就是利用linux的debugfs API写一个调试文件系统。 事实上,底层的API全写好了,我们就是简单的调调API就成的事情! 事先
> 原作:Keith Peters > 原文:https://www.bit-101.com/blog/2022/11/coding-curves/ > 译者:池中物王二狗(sheldon) > blog: http://cnblogs.com/willian/ > 源码与中英对照:github:
# 第二章 三角函数曲线(TRIG CURVES) > 原作:Keith Peters > 原文:https://www.bit-101.com/blog/2022/11/coding-curves/ > 译者:池中物王二狗(sheldon) > blog: http://cnblogs.com/w
# 第三章 弧,圆,椭圆(TRIG CURVES) > 原作:Keith Peters https://www.bit-101.com/blog/2022/11/coding-curves/ > 译者:池中物王二狗(sheldon) > blog: http://cnblogs.com/willia
# 第四章 利萨茹曲线(Lissajous Curves) > 原作:Keith Peters https://www.bit-101.com/blog/2022/11/coding-curves/ > 译者:池中物王二狗(sheldon) > blog: http://cnblogs.com/wi
> 原作:Keith Peters https://www.bit-101.com/blog/2022/11/coding-curves/ > 译者:池中物王二狗(sheldon) > blog: http://cnblogs.com/willian/ > 源码:github: https://gi
# 第六章 平托图 (Pintographs) > 原作:Keith Peters https://www.bit-101.com/blog/2022/11/coding-curves/ > 译者:池中物王二狗(sheldon) > blog: http://cnblogs.com/willian/
# 抛物线 Parabolas > 原作:Keith Peters https://www.bit-101.com/blog/2022/11/coding-curves/ > 译者:池中物王二狗(sheldon) > blog: http://cnblogs.com/willian/ > 源码:gi
# 贝赛尔曲线(Bézier Curves) > 原作:Keith Peters https://www.bit-101.com/blog/2022/11/coding-curves/ > 译者:池中物王二狗(sheldon) > blog: http://cnblogs.com/willian/
# 第九章 旋轮曲线(ROULETTE CURVES) > 原作:Keith Peters https://www.bit-101.com/blog/2022/11/coding-curves/ > 译者:池中物王二狗(sheldon) > 源码:github: https://github.com
> 原作:Keith Peters https://www.bit-101.com/blog/2022/11/coding-curves/ > 译者:池中物王二狗(sheldon) > 源码:github: https://github.com/willian12345/coding-curves
# 第十一章 玫瑰花形 ROSES > 原作:Keith Peters https://www.bit-101.com/blog/2022/11/coding-curves/ > > 译者:池中物王二狗(sheldon) > > 源码:github: https://github.com/willi
# 第十二章 玑镂(扭索)纹 > 原作:Keith Peters https://www.bit-101.com/blog/2022/11/coding-curves/ > > 译者:池中物王二狗(sheldon) > > > 源码:github: https://github.com/willia
# 第十三章 超级椭圆与超级方程(Superellipses and Superformulas) > 原作:Keith Peters https://www.bit-101.com/blog/2022/11/coding-curves/ > > 译者:池中物王二狗(sheldon) > > 源码:
# 第十四章 其它曲线(Miscellaneous Curves) > 原作:Keith Peters https://www.bit-101.com/blog/2022/11/coding-curves/ > > 译者:池中物王二狗(sheldon) > > blog: http://cnblog
74、搜索二维矩阵 给你一个满足下述两条属性的 m x n 整数矩阵: 每行中的整数从左到右按非严格递增顺序排列。 每行的第一个整数大于前一行的最后一个整数。 给你一个整数 target ,如果 target 在矩阵中,返回 true ;否则,返回 false 。 示例 1: 输入:matrix =
416. 分割等和子集 题目难易:中等 给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。 注意: 每个数组中的元素不会超过 100 数组的大小不会超过 200 示例 1: 输入: [1, 5, 11, 5] 输出: true 解释: 数组可以分割成 [1,
118. 杨辉三角 给定一个非负整数 numRows,生成「杨辉三角」的前 numRows 行。 在「杨辉三角」中,每个数是它左上方和右上方的数的和。 示例 1: 输入: numRows = 5 输出: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]] 示例 2:
63. 不同路径 II 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。 现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径? 网格中的障碍
509. 斐波那契数 斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1 给你n ,请计算 F(n)