基于MindSpore实现BERT对话情绪识别

本文分享自华为云社区《【昇思25天学习打卡营打卡指南-第二十四天】基于 MindSpore 实现 BERT 对话情绪识别》,作者:JeffDing。 模型简介 BERT全称是来自变换器的双向编码器表征量(Bidirectional Encoder Representations from Trans

[转帖]陈巍谈芯:NLP里比BERT更优秀的XLNet长什么样?

https://zhuanlan.zhihu.com/p/447836322 ​ 目录 收起 一、XLNet的优势 1)独得AR与AE两大绝学 2)集成了Tansformer-XL 二、XLNet的结构特点 1) 置换语言模型(PermutationLanguage Modeling,PLM) 2)

算法金 | 秒懂 AI - 深度学习五大模型:RNN、CNN、Transformer、BERT、GPT 简介

1. RNN(Recurrent Neural Network) 时间轴 1986年,RNN 模型首次由 David Rumelhart 等人提出,旨在处理序列数据。 关键技术 循环结构 序列处理 长短时记忆网络(LSTM)和门控循环单元(GRU) 核心原理 RNN 通过循环结构让网络记住以前的输入

基于Python和TensorFlow实现BERT模型应用

本文分享自华为云社区《使用Python实现深度学习模型:BERT模型教程》,作者: Echo_Wish。 BERT(Bidirectional Encoder Representations from Transformers)是Google提出的一种用于自然语言处理(NLP)的预训练模型。BERT

手动实现BERT

本文重点介绍了如何从零训练一个BERT模型的过程,包括整体上BERT模型架构、数据集如何做预处理、MASK替换策略、训练模型和保存、加载模型和测试等。 一.BERT架构 BERT设计初衷是作为一个通用的backbone,然后在下游接入各种任务,包括翻译任务、分类任务、回归任务等。BERT模型架构如下

手动实现Transformer

Transformer和BERT可谓是LLM的基础模型,彻底搞懂极其必要。Transformer最初设想是作为文本翻译模型使用的,而BERT模型构建使用了Transformer的部分组件,如果理解了Transformer,则能很轻松地理解BERT。 一.Transformer模型架构 1.编码器 (

基于OCR进行Bert独立语义纠错实践

摘要:本案例我们利用视频字幕识别中的文字检测与识别模型,增加预训练Bert进行纠错 本文分享自华为云社区《Bert特调OCR》,作者:杜甫盖房子。 做这个项目的初衷是发现图比较糊/检测框比较长的时候,OCR会有一些错误识别,所以想对识别结果进行纠错。一个很自然的想法是利用语义信息进行纠错,其实在OC

三步实现BERT模型迁移部署到昇腾

本文从镜像构建、容器部署到性能评估,完成bert模型昇腾迁移部署案例。

【NLP 系列】Bert 词向量的空间分布

我们知道Bert 预训练模型针对分词、ner、文本分类等下游任务取得了很好的效果,但在语义相似度任务上,表现相较于 Word2Vec、Glove 等并没有明显的提升。

论文复现丨基于ModelArts实现Text2SQL

摘要:该论文提出了一种基于预训练 BERT 的新神经网络架构,称为 M-SQL。基于列的值提取分为值提取和值列匹配两个模块。 本文分享自华为云社区《基于ModelArts实现Text2SQL》,作者:HWCloudAI。 M-SQL: Multi-Task Representation Learni

中文情感分类

本文通过ChnSentiCorp数据集介绍了文本分类任务过程,主要使用预训练语言模型bert-base-chinese直接在测试集上进行测试,也简要介绍了模型训练流程,不过最后没有保存训练好的模型。 一.任务和数据集介绍 1.任务 中文情感分类本质还是一个文本分类问题。 2.数据集 本文使用ChnS

中文完形填空

本文通过ChnSentiCorp数据集介绍了完型填空任务过程,主要使用预训练语言模型bert-base-chinese直接在测试集上进行测试,也简要介绍了模型训练流程,不过最后没有保存训练好的模型。 一.完形填空 完形填空应该大家都比较熟悉,就是把句子中的词挖掉,根据上下文推测挖掉的词是什么。 二.

中文句子关系推断

本文通过ChnSentiCorp数据集介绍了中文句子关系推断任务过程,主要使用预训练语言模型bert-base-chinese直接在测试集上进行测试,也简要介绍了模型训练流程,不过最后没有保存训练好的模型。 一.任务简介和数据集 通过模型来判断2个句子是否连续,使用ChnSentiCorp数据集,不

解码Transformer:自注意力机制与编解码器机制详述与代码实现

> 本文全面探讨了Transformer及其衍生模型,深入分析了自注意力机制、编码器和解码器结构,并列举了其编码实现加深理解,最后列出基于Transformer的各类模型如BERT、GPT等。文章旨在深入解释Transformer的工作原理,并展示其在人工智能领域的广泛影响。 > 作者 TechLe

聊聊语言模型与知识图谱

## 语言模型 语言模型泛指:大语言模型LLM、通用模型GLM。 语言模型也是知识库。基于语言模型下的实现,比如ChatGPT,BERT,ChatGLM等等,这类知识库就像是已经人为处理好、编排好、可直接使用的知识库。 ## 知识图谱 知识图谱的定义由Google公司在2012年提出,被界定为用来提

  • 首页
  • 上一页
  • 1
  • 下一页
  • 尾页