【转帖】Alpaca 7B:斯坦福从LLaMA-7B微调的语言模型

https://www.jianshu.com/p/f8f8f660d2c3 https://crfm.stanford.edu/2023/03/13/alpaca.html https://crfm.stanford.edu/alpaca/ https://github.com/tatsu-lab

Llama2-Chinese项目:1-项目介绍和模型推理

Atom-7B与Llama2间的关系:Atom-7B是基于Llama2进行中文预训练的开源大模型。为什么叫原子呢?因为原子生万物,Llama中文社区希望原子大模型未来可以成为构建AI世界的基础单位。目前社区发布了6个模型,如下所示: FlagAlpha/Atom-7BFlagAlpha/Llama2

Falcon-7B大型语言模型在心理健康对话数据集上使用QLoRA进行微调

文本是参考文献[1]的中文翻译,主要讲解了Falcon-7B大型语言模型在心理健康对话数据集上使用QLoRA进行微调的过程。项目GitHub链接为https://github.com/iamarunbrahma/finetuned-qlora-falcon7b-medical,如下所示: 使用领域适

Llama2-Chinese项目:2.1-Atom-7B预训练

虽然Llama2的预训练数据相对于第一代LLaMA扩大了一倍,但是中文预训练数据的比例依然非常少,仅占0.13%,这也导致了原始Llama2的中文能力较弱。为了能够提升模型的中文能力,可以采用微调和预训练两种路径,其中: 微调需要的算力资源少,能够快速实现一个中文Llama的雏形。但缺点也显而易见,

【必看!】阿里云推出QWen-7B和QWen-7b-Chat,开放免费商用!

阿里云最近发布了两款大型开源模型QWen-7B和QWen-7b-Chat,这两款模型的参数规模达到了70亿,用户可以在Hugging Face和ModelScope上免费使用。尽管大型模型的热度近期有所下降,但阿里云选择开源模型来赢得用户的支持,并保持自身在竞争中的优势。这一举措也引起了人们的关注,因为不开源可能会导致信息泄露的风险。通过开源模型,阿里云既能满足用户需求,又能保持技术竞争力。

解析QAnything启动命令过程

一.启动命令过程日志 启动命令bash ./run.sh -c local -i 0 -b hf -m Qwen-1_8B-Chat -t qwen-7b-chat。输入日志如下所示: root@MM-202203161213:/mnt/l/20230918_RAG方向/QAnything# bas

gazebo小车模型(附带仿真环境)

> 博客地址:https://www.cnblogs.com/zylyehuo/ ## 参考链接 > 1、(https://blog.csdn.net/qq_43406338/article/details/109600827?ops_request_misc=%7B%22request%5Fid%

Llama2-Chinese项目:3.2-LoRA微调和模型量化

提供LoRA微调和全量参数微调代码,训练数据为data/train_sft.csv,验证数据为data/dev_sft.csv,数据格式为"Human: "+问题+"\nAssistant: "+答案。本文主要介绍Llama-2-7b模型LoRA微调以及4bit量化的实践过程。

使用Triton部署chatglm2-6b模型

一、技术介绍 NVIDIA Triton Inference Server是一个针对CPU和GPU进行优化的云端和推理的解决方案。 支持的模型类型包括TensorRT、TensorFlow、PyTorch(meta-llama/Llama-2-7b)、Python(chatglm)、ONNX Run

GPT大语言模型Vicuna本地化部署实践(效果秒杀Alpaca)

Vicuna-13B的推理效果据说达到了ChatGPT的90%以上的能力,优于LLaMA-13B和Alpaca-13B的效果。同时Vicuna的训练成本也很低,所以尝试本地化部署一下Vicuna-7B,看看效果如何,说干就干。

基于Llama2模型的开源模型

2023年7月18日Meta开源了Llama2,在2万亿个Token上训练,可用于商业和研究,包括从7B到70B模型权重、预训练和微调的代码。相比Llama1,Llama2有较多提升,评估结果如下所示: 基于Llama2模型的开源模型如下所示: 1.WizardCoder Python V1.0 h

微调 Florence-2 - 微软的尖端视觉语言模型

Florence-2 是微软于 2024 年 6 月发布的一个基础视觉语言模型。该模型极具吸引力,因为它尺寸很小 (0.2B 及 0.7B) 且在各种计算机视觉和视觉语言任务上表现出色。 Florence 开箱即用支持多种类型的任务,包括: 看图说话、目标检测、OCR 等等。虽然覆盖面很广,但仍有可

Langchain-Chatchat项目:1.2-Baichuan2项目整体介绍

由百川智能推出的新一代开源大语言模型,采用2.6万亿Tokens的高质量语料训练,在多个权威的中文、英文和多语言的通用、领域benchmark上取得同尺寸最佳的效果,发布包含有7B、13B的Base和经过PPO训练的Chat版本,并提供了Chat版本的4bits量化。 一.Baichuan2模型 B

  • 首页
  • 上一页
  • 1
  • 下一页
  • 尾页