ChatGLM2-6B是开源中英双语对话模型ChatGLM-6B的第2代版本,引入新的特性包括更长的上下文(基于FlashAttention技术,将基座模型的上下文长度由ChatGLM-6B的2K扩展到了32K,并在对话阶段使用8K的上下文长度训练);更高效的推理(基于Multi-QueryAtte
本文将介绍我利用集团9n-triton工具部署ChatGLM2-6B过程中踩过的一些坑,希望可以为有部署需求的同学提供一些帮助。
目前,大模型的技术应用已经遍地开花。最快的应用方式无非是利用自有垂直领域的数据进行模型微调。chatglm2-6b在国内开源的大模型上,效果比较突出。本文章分享的内容是用chatglm2-6b模型在集团EA的P40机器上进行垂直领域的LORA微调。
今天在ChatGLM2-6B 的仓库里看到了这么一个issue: https://github.com/THUDM/ChatGLM2-6B/issues/122: 这位兄弟说的挺好,其中有点小错误:三星Tizen架构 其实不是架构,是属于arm架构 ,Tizen是 三星的一个操作系统。由此我想到了C
一、技术介绍 NVIDIA Triton Inference Server是一个针对CPU和GPU进行优化的云端和推理的解决方案。 支持的模型类型包括TensorRT、TensorFlow、PyTorch(meta-llama/Llama-2-7b)、Python(chatglm)、ONNX Run
本文期望通过本地化部署一个基于LLM模型的应用,能让大家对构建一个完整的应用有一个基本认知。包括基本的软硬环境依赖、底层的LLM模型、中间的基础框架及最上层的展示组件,最终能达到在本地零编码体验的目的。
微调类型简介 1. SFT监督微调:适用于在源任务中具有较高性能的模型进行微调,学习率较小。常见任务包括中文实体识别、语言模型训练、UIE模型微调。优点是可以快速适应目标任务,但缺点是可能需要较长的训练时间和大量数据。 2. LoRA微调:通过高阶矩阵秩的分解减少微调参数量,不改变预训练模型参数,新
在本文中,我们将以chatglm-6b为例详细介绍GPU云主机搭建AI大语言模型的过程,并使用Flask构建前端界面与该模型进行对话。
1、官网 ChatGLM3 2、下载ChatGLM3源码 直接在https://github.com/THUDM/ChatGLM3,下载源码 3、下载模型 如果显卡8G一下建议下载ChatGLM3-6B,ModelScope是国内的,下载比较快 用下面两种方式都可以下载 使用git在MadelSco
基于Langchain与ChatGLM等语言模型的本地知识库问答应用实现。项目中默认LLM模型改为THUDM/chatglm2-6b[2],默认Embedding模型改为moka-ai/m3e-base[3]。 一.项目介绍 1.实现原理 本项目实现原理如下图所示,过程包括加载文件->读取文本->文
## 前言 最近一直在炼丹(搞AIGC这块),突然发现业务代码都索然无味了… 上次发了篇AI画图的文章,ChatGPT虽然没法自己部署,但现在开源的LLM还是不少的,只要有一块差不多的显卡,要搞个LLM本地部署还是没问题的。 本文将介绍这以下两个国产开源LLM的本地部署 - ChatGLM-6B -