相信不少同学都有欧阳这种情况,年初的时候给自己制定了一份关于学习英语和源码的详细年度计划。但是到了实际执行的时候因为各种情况制定的计划基本都没有完成,年底回顾时发现年初制定的计划基本都没完成。痛定思痛,第二年年初决定再次制定一份学习英语和源码的详细年度计划,毫无疑问又失败了。
图像增强方法在数字图像处理中占有重要地位,它能够有效提高图像的视觉效果,增强图像的细节信息,从而在医学、遥感、工业检测等多个领域发挥重要作用 1. 空间域增强方法 空间域增强方法是通过直接对图像像素进行操作来实现图像增强的技术。以下是几种常见的空间域增强方法: 1.1 直方图均衡化 直方图均衡化是一
LabVIEW的从同一个类实例化的多个对象如何执行各自的方法呢? 这几天跟同事讨论到LabVIEW的面向对象编程中,如果我设计的一个类有一个方法比较耗时,那么当我实例化多个对象时,那么这个耗时的方法是怎么执行的呢?是各自并行执行还是,必须等某一个对象的方法调用完,接下来调用第二个对象的该方法呢? 接
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 今日 210+/10000,内含 Pandas 是一个强大的数据分析库,广泛应用于科学研究、金融分析、商业智能等领域。它提供了高效的数据结构和数据分析工具,使得处理和分析数据变得更加简单
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 今日 216/10000 抱个拳,送个礼 神经网络设计与选择 参数初始化与优化 学习率调整与正则化 数据预处理与标准化 训练过程与监控 特定模型技巧 其他训练技巧 1. 神经网络设计与选
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 今日 215/10000 为模型找到最好的超参数是机器学习实践中最困难的部分之一 1. 超参数调优的基本概念 机器学习模型中的参数通常分为两类:模型参数和超参数。模型参数是模型通过训
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 参考 论文:https://arxiv.org/abs/2101.02118 更多内容,见微*公号往期文章: 审稿人:拜托,请把模型时间序列去趋势!! 使用 Python 快速上手 LS
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 不要轻易使用 For 循环 For 循环,老铁们在编程中经常用到的一个基本结构,特别是在处理列表、字典这类数据结构时。但是,这东西真的是个双刃剑。虽然看起来挺直白,一用就上手,但是,有时
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 抱个拳,送个礼 高斯过程回归(GPR)是一种非参数化的贝叶斯方法,用于解决回归问题。与传统的线性回归模型不同,GPR 能够通过指定的核函数捕捉复杂的非线性关系,并提供不确定性的估计。在本
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 抱个拳,送个礼 预警:今天文章的描述可能会让你有点别扭;如感到不适,请及时停止 在我行走江湖的行囊中,有两件利器,tableau与matplotlib,它们足以让我应对各种数据可视化的较
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 抱个拳,送个礼 在现代自然语言处理(NLP)领域,Transformer 模型的出现带来了革命性的变化。它极大地提升了语言模型的性能和效率,而自注意力机制是其中的核心组件。 今个儿我们将
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 线性回归的理论依据是什么? 多重共线性是什么,它如何影响线性回归模型? 什么是自相关性,自相关性对线性回归有什么影响? 什么是异方差性,如何检测和处理异方差性? 训练数据与测试数据分布不
构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。 选择正确的验证指标就像选择一副水晶球:它使我们能够以清晰的视野看到模型的性能。 在本指南中,我们将探讨分类和回归的基本指标和有效评估模型的知识。 学习何时使用每个指标、优点和缺点以及如何在 Python 中实现它们 1 分类指标
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 抱个拳,送个礼 在当今的人工智能(AI)领域,Embedding 是一个不可或缺的概念。如果你没有深入理解过 Embedding,那么就无法真正掌握 AI 的精髓。接下来,我们将深入探讨
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 在光谱学领域,数据预处理是不可或缺的一环。 本文将基于 NIR soil 近红外光谱数据,运用 Python 语言进行数据处理,并通过图表直观反映预处理带来的变化。(数据集:后台回复
OpenGrok是一个源码搜索及交叉引用查询引擎,OpenGrok的引入可以帮助我们更好地在浩如烟海的源码里找到自己需要的那坨代码。
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 决策树是一种简单直观的机器学习算法,它广泛应用于分类和回归问题中。它的核心思想是将复杂的决策过程分解成一系列简单的决策,通过不断地将数据集分割成更小的子集来进行预测。本文将带你详细了解决
开源的翻译软件众多,但大多数依赖于翻译 API 服务,因此就需要联网、有次数限制、并非完全免费。然后,本周上榜的是一款可以离线使用的 Android 翻译软件:RTranslator,它创建于 4 年前,最初也是基于谷歌翻译 API 开发,但在上周发布的 2.0 版本中,采用了全新的 NLLB+Wh...
大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 机器学习本质上和数据科学一样都是依赖概率统计,今天整整那些听起来让人头大的机器学习江湖黑话 A - C A/B Testing (A/B 测试) A/B测试是一种在线实验,通过对比测试两
多线程在访问同一个共享变量时很可能会出现并发问题,特别是在多线程对共享变量进入写入时,那么除了加锁还有其他方法避免并发问题吗?本文将详细讲解 ThreadLocal 的使用及其源码。