上古神兵,先天至宝,Win11平台安装和配置NeoVim0.8.2编辑器搭建Python3开发环境(2023最新攻略)

毫无疑问,我们生活在编辑器的最好年代,Vim是仅在Vi之下的神级编辑器,而脱胎于Vim的NeoVim则是这个时代最好的编辑器,没有之一。异步支持、更好的内存管理、更快的渲染速度、更多的编辑命令,是大神Thiago de Arruda对开发者们最好的技术馈赠。 之前一篇:Win10系统下安装编辑器之神

千姿百态,瞬息万变,Win11系统NeoVim打造全能/全栈编辑器(前端/Css/Js/Vue/Golang/Ruby/ChatGpt)

我曾经多次向人推荐Vim,其热情程度有些类似现在卖保险的,有的时候,人们会因为一些弥足珍贵的美好暗暗渴望一个巨大的负面,比如因为想重温手动挡的快乐而渴望买下一辆二十万公里的老爷车,比如因为所谓完美的音质而舍不得一个老旧的有线耳机,比如因为一个铜炉火锅而期待北京那漫长而寒冷的冬天。

基于NOSTR协议的“公有制”版本的Twitter,去中心化社交软件Damus用后感,一个极端走向另一个极端

最近,一个幽灵,Web3的幽灵,在网络游荡,它叫Damus,这玩意诠释了什么叫做病毒式营销,滑稽的是,一个Web3产品却在Web2的产品链上疯狂传销,各方大佬纷纷为其背书,到底发生了什么?Damus的葫芦里,卖的是什么药? 注册和简单实用 很少有什么产品在用户注册环节会有什么噱头,但Damus确实出

吾剑未尝不利,国内Azure平替,科大讯飞人工智能免费AI语音合成(TTS)服务Python3.10接入

微软Azure平台的语音合成(TTS)技术确实神乎其技,这一点在之前的一篇:含辞未吐,声若幽兰,史上最强免费人工智能AI语音合成TTS服务微软Azure(Python3.10接入),已经做过详细介绍,然则Azure平台需要信用卡验证,有一定门槛,对国内用户不太友好,放眼神州,科大讯飞的讯飞开放平台也

影片自由,丝滑流畅,Docker容器基于WebDav协议通过Alist挂载(百度网盘/阿里云盘)Python3.10接入

使用过NAS(Network Attached Storage)的朋友都知道,它可以通过局域网将本地硬盘转换为局域网内的“网盘”,简单理解就是搭建自己的“私有云”,但是硬件和网络成本都太高了,有点可望而不可及的意思。Alist开源库则可以满足我们,它能将公共网盘反过来变成一种联网的本地硬盘,使用We

躬身入局,干货分享,2023年春招后端技术岗(Python)面试实战教程,Offer今始为君发

早春二月,研发倍忙,杂花生树,群鸥竟飞。为什么?因为春季招聘,无论是应届生,还是职场老鸟,都在摩拳擦掌,秣马厉兵,准备在面试场上一较身手,既分高下,也决Offer,本次我们打响春招第一炮,躬身入局,让2023年的第一个Offer来的比以往快那么一点点。

加密,各种加密,耙梳加密算法(Encryption)种类以及开发场景中的运用(Python3.10)

不用说火爆一时,全网热议的Web3.0区块链技术,也不必说诸如微信支付、支付宝支付等人们几乎每天都要使用的线上支付业务,单是一个简简单单的注册/登录功能,也和加密技术脱不了干系,本次我们耙梳各种经典的加密算法,试图描摹加密算法在开发场景中的运用技巧。 可逆加密算法(对称加密) 加密算法是一种将原始数

前端已死?全栈当立?取法于中,仅得其下。

开篇明义,前端已死?根本就是扯淡。前端技术精微渊深,驳杂宽广,除了基础的 HTML、CSS 和 JavaScript 技术外,前端技术还涉及到许多其他相关技术和工具,比如前端框架、UI 库、自动化构建工具、代码管理工具等等。这些技术并没有死,反而生态圈愈发健壮,但为什么前端已死的论调甚嚣尘上? 前端

玫瑰花变蚊子血,自动化无痕浏览器对比测试,新贵PlayWright Vs 老牌Selenium,基于Python3.10

也许每一个男子全都有过这样的两个女人,至少两个。娶了红玫瑰,久而久之,红的变了墙上的一抹蚊子血,白的还是床前明月光;娶了白玫瑰,白的便是衣服上沾的一粒饭黏子,红的却是心口上一颗朱砂痣。--张爱玲《红玫瑰与白玫瑰》 Selenium一直都是Python开源自动化浏览器工具的王者,但这两年微软开源的Pl

登峰造极,师出造化,Pytorch人工智能AI图像增强框架ControlNet绘画实践,基于Python3.10

人工智能太疯狂,传统劳动力和内容创作平台被AI枪毙,弃尸尘埃。并非空穴来风,也不是危言耸听,人工智能AI图像增强框架ControlNet正在疯狂地改写绘画艺术的发展进程,你问我绘画行业未来的样子?我只好指着ControlNet的方向。本次我们在M1/M2芯片的Mac系统下,体验人工智能登峰造极的绘画艺术。

人工智能,丹青圣手,全平台(原生/Docker)构建Stable-Diffusion-Webui的AI绘画库教程(Python3.10/Pytorch1.13.0)

世间无限丹青手,遇上AI画不成。最近一段时间,可能所有人类画师都得发出一句“既生瑜,何生亮”的感叹,因为AI 绘画通用算法Stable Diffusion已然超神,无需美术基础,也不用经年累月的刻苦练习,只需要一台电脑,人人都可以是丹青圣手。 本次我们全平台构建基于Stable-Diffusion算

重新定义性价比!人工智能AI聊天ChatGPT新接口模型gpt-3.5-turbo闪电更新,成本降90%,Python3.10接入

北国春迟,春寒料峭略带阴霾,但ChatGPT新接口模型gpt-3.5-turbo的更新为我们带来了一丝暖意,使用成本更加亲民,比高端产品ChatGPT Plus更实惠也更方便,毕竟ChatGPT Plus依然是通过网页端来输出,Api接口是以token的数量来计算价格的,0.002刀每1000个token,token可以理解为字数,说白了就是每1000个字合0.01381人民币,以ChatGPT无

口播神器,基于Edge,微软TTS(text-to-speech)文字转语音免费开源库edge-tts实践(Python3.10)

不能否认,微软Azure在TTS(text-to-speech文字转语音)这个人工智能细分领域的影响力是统治级的,一如ChatGPT在NLP领域的随心所欲,予取予求。君不见几乎所有的抖音营销号口播均采用微软的语音合成技术,其影响力由此可见一斑,仅有的白璧微瑕之处就是价格略高,虽然国内也可以使用科大讯

逐句回答,流式返回,ChatGPT采用的Server-sent events后端实时推送协议Python3.10实现,基于Tornado6.1

善于观察的朋友一定会敏锐地发现ChatGPT网页端是逐句给出问题答案的,同样,ChatGPT后台Api接口请求中,如果将Stream参数设置为True后,Api接口也可以实现和ChatGPT网页端一样的流式返回,进而更快地给到前端用户反馈,同时也可以缓解连接超时的问题。 Server-sent ev

笔精墨妙,妙手丹青,微软开源可视化版本的ChatGPT:Visual ChatGPT,人工智能AI聊天发图片,Python3.10实现

说时迟那时快,微软第一时间发布开源库Visual ChatGPT,把 ChatGPT 的人工智能AI能力和Stable Diffusion以及ControlNet进行了整合。常常被互联网人挂在嘴边的“赋能”一词,几乎已经变成了笑话,但这回,微软玩了一次真真正正的AI“赋能”,彻底打通了人工智能“闭环

性能的极致,Rust的加持,Zed-Dev编辑器快速搭建Python3.10开发环境

快就一个字,甚至比以快著称于世的Sublime 4编辑器都快,这就是Zed.dev编辑器。其底层由 Rust 编写,比基于Electron技术微软开源的编辑器VSCode快一倍有余,性能上无出其右,同时支持多人编辑代码。 安装和配置Zed.dev Zed.dev编辑器还在灰度测试阶段,暂时只释出了M

顺应潮流,解放双手,让ChatGPT不废话直接帮忙编写可融入业务可运行的程序代码(Python3.10实现)

众所周知,ChatGPT可以帮助研发人员编写或者Debug程序代码,但是在执行过程中,ChatGPT会将程序代码的一些相关文字解释和代码段混合着返回,如此,研发人员还需要自己进行编辑和粘贴操作,效率上差强人意,本次我们试图将ChatGPT直接嵌入到代码业务中,让ChatGPT生成可以直接运行的代码。

文心一言,通营销之学,成一家之言,百度人工智能AI大数据模型文心一言Python3.10接入

“文心”取自《文心雕龙》一书的开篇,作者刘勰在书中引述了一个古代典故:春秋时期,鲁国有一位名叫孔文子的大夫,他在学问上非常有造诣,但是他的儿子却不学无术,孔文子非常痛心。 一天,孔文子在山上遇到了一位神仙,神仙告诉他:“你的儿子之所以不学无术,是因为你没有给他灌输文心,让他懂得文学的魅力和意义。”孔

暗夜发光,独自闪耀,盘点网页暗黑模式(DarkMode)下的特效和动效,CSS3实现

众所周知,网页的暗黑模式可以减少屏幕反射和蓝光辐射,减少眼睛的疲劳感,特别是在夜间使用时更为明显。其实暗黑模式也给霓虹灯效应(Neon Effect)提供了发挥的环境。 霓虹灯效应是一种视觉效果,其特点是在深色背景上使用鲜艳的颜色来产生强烈的视觉冲击。这种效应通常用于设计海报、广告、标志和网页等。霓

本地推理,单机运行,MacM1芯片系统基于大语言模型C++版本LLaMA部署“本地版”的ChatGPT

OpenAI公司基于GPT模型的ChatGPT风光无两,眼看它起朱楼,眼看它宴宾客,FaceBook终于坐不住了,发布了同样基于LLM的人工智能大语言模型LLaMA,号称包含70亿、130亿、330亿和650亿这4种参数规模的模型,参数是指神经网络中的权重和偏置等可调整的变量,用于训练和优化神经网络