0 序言 在几经选择、对比之后,我选择:Obsidian + Remotely Save插件 + 第三方存储/OSS(七牛云) 的方案来搭建自己的【知识管理系统】。 对比分析知识管理工具的过程,详情参见: [知识管理] 个人知识管理之知识管理工具的全面分析 - 博客园/千千寰宇 【推荐】 知识管理与
背景 在数据密集的业务领域,尤其是金融,保险,税务等行业中,经常需要利用Excel模型,来对业务进行分析和处理。例如: 1.金融投资: 根据模型进行估值计算,并对投资风险进行评估,通过测算出投资的内部收益率(IRR),净现值(NPV)来做投资收益分析,反应项目的获利能力。 2.保险精算: 运用数学,
本文由葡萄城技术团队于博客园原创并首发 转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具、解决方案和服务,赋能开发者。 实现数据+业务一体化的指标分析 从零售系统进化史get 数据统计的需求变更 零售系统需要的数据统计需求 V1.0 只需要获取当日累计的销售额,于是店老板就用 Excel
Pandas是一个开源的Python数据分析库。 它提供了快速,灵活和富有表现力的数据结构,旨在使数据清洗和分析变得简单而快速。 Pandas是基于NumPy数组构建的,因此它在许多NumPy函数上提供了直接的支持。它还提供了用于对表格数据进行操作的数据结构,例如Series和DataFrame。
pandas进行数据整理的意义在于,它是数据分析、数据科学和机器学习的前置步骤。 通过数据整理可以提前了解数据的概要,缺失值、重复值等情况,为后续的分析和建模提供更为可靠的数据基础。 本篇主要介绍利用pandas进行数据整理的各种方法。 1. 数据概要 获取数据概要信息可以帮助我们了解数据的基本情况
数据集拆分是将一个大型的数据集拆分为多个较小的数据集,可以让数据更加清晰易懂,也方便对单个数据集进行分析和处理。 同时,分开的数据集也可以分别应用不同的数据分析方法进行处理,更加高效和专业。 数据集合并则是将多个数据集合并成一个大的数据集,可以提供更全面的信息,也可以进行更综合的数据分析。 同时,数
`numpy` 数组通常是用于数值计算的多维数组,而排序功能可以快速、准确地对数据进行排序,从而得到更加清晰、易于分析的结果。 在数据分析和处理过程中,常常需要对数据进行排序,以便更好地理解和发现其中的规律和趋势。 排序会应用在很多场景中,比如: 1. 数据分类:将数据按照一定的特征进行分类,可以通
拆分列是`pandas`中常用的一种数据操作,它可以将一个包含多个值的列按照指定的规则拆分成多个新列,方便进行后续的分析和处理。拆分列的使用场景比较广泛,以下是一些常见的应用场景: 1. 处理日期数据:在日期数据中,经常会将年、月、日等信息合并成一列,通过拆分列可以将其拆分成多个新列,方便进行时间序
转载请注明出处: TCPDump是一个功能强大的网络抓包工具,它能够在命令行界面捕获、分析和解析网络数据包。下面是TCPDump命令的使用总结,包括使用语法、常用参数说明等: 使用语法:tcpdump [options] [expression] 参数说明: -i :指定要监听
在接到软件开发任务之后,第一件要做的事情就是进行需求调研工作,基于前期的沟通以及合同向用户了解具体需求,从而有针对性地开展后续工作。整个调研过程分为调研准备,调研实施,需求分析。
Kafka 和 RabbitMQ 都是流行的开源消息系统,它们可以在分布式系统中实现数据的可靠传输和处理。Kafka 和 RabbitMQ 有各自的优势和特点,它们适用于不同的场景和需求。本文将比较 Kafka 和 RabbitMQ 的主要区别,并分析何时使用 Kafka 而不是 RabbitMQ。
MySQL 和 Elasticsearch 是两种不同的数据管理系统,它们各有优劣,适用于不同的场景。本文将从以下几个方面对它们进行比较和分析: - 数据模型 - 查询语言 - 索引和搜索 - 分布式和高可用 - 性能和扩展性 - 使用场景 ## 数据模型 MySQL 是一个关系型数据库管理系统(R
摘要:今天我们就来一起手撕ScheduledThreadPoolExecutor类的源代码。 本文分享自华为云社区《深度解析ScheduledThreadPoolExecutor类的源代码》,作者:冰 河。 在之前的文章中,我们深度分析了ThreadPoolExecutor类的源代码,而Schedu
本文分享自华为云社区《CTPN+CRNN 算法端到端实现文字识别》,作者:HWCloudAI。 OCR介绍 光学字符识别(英语:Optical Character Recognition,OCR)是指对文本资料的图像文件进行分析识别处理,获取文字及版面信息的过程。发展时间较长,使用很普遍。OCR作为
摘要:多线程访问了共享的数据,会产生线程安全问题。 本文分享自华为云社区《多线程安全问题原理和解决办法Synchronized和ReentrantLock使用与区别》,作者:共饮一杯无。 线程安全问题概述 卖票问题分析 单窗口卖票 一个窗口(单线程)卖100张票没有问题单线程程序是不会出现线程安全问
摘要:本文介绍了SpEL表达式以及常见的SpEL注入攻击,详细地介绍了部分漏洞攻击实例以及常用的漏洞检测与防御手段。 本文分享自华为云社区《SpEL表达式注入漏洞分析、检查与防御》,作者:华为云软件分析Lab。 在安全角度来看外部来源的数据,均应视为不可信数据,对外部数据,其包含的所有信息都须经过校
摘要:通过本教程,我们学习了另一类客流统计应用——过线客流统计,通常用于室内出入口,摄像头会架设在高处俯拍,使用头肩部检测可以减少人与人之间的遮挡。 本文分享自华为云社区《客流分析之基于头肩部检测的过线客流统计》,作者:HiLens_feige 。 1.基于头肩部检测的过线客流统计 除了划区域客流统
摘要:通过本教程,我们学习了一类客流统计应用——区域内客流统计,通常用于室外安防,或室内客流热力图,经过简单改造还可以实现区域入侵检测、人员在离岗检测等应用。 本文分享自华为云社区《客流分析之基于人形检测的划区域客流统计》,作者:HiLens_feige 。 在智慧园区、智慧门店等商业场景中,划区域
摘要:本文提出并开发了高质量大规模缺陷库全自动构建方法BugBuilder,自动从版本控制系统中的人为编写的补丁中提取完整且精准的缺陷修复补丁。 本文分享自华为云社区《BugBuilder: 高质量大规模缺陷库自动构建方法》,作者:华为云软件分析Lab 。 1. 问题场景 由于各种原因,例如错误定位
本文分享自华为云社区《选择KV数据库最重要的是什么?》,作者:GaussDB 数据库 。 经常有客户提到KV数据库,但却偏偏“不要Redis”。比如有个做安全威胁分析平台的客户,他们明确表示自己对可靠性要求非常高,需要的不是开源Redis这种内存缓存库,而是KV数据库。 虽然最后我也没问清楚他们业务